AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

Atomic regulations of single atom from metal-organic framework derived carbon for advanced water treatment

Xiang LiBo Wang( )
Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Technologies Research Institute (Jinan), Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, No. 5, South Street, Zhongguancun, Haidian District, Beijing 100081, China
Show Author Information

Graphical Abstract

Engineered nanomaterials (ENMs) have attracted significant research interests in water treatment. This review summarized the recent studies of water decontamination using single atom-embedded nitrogen-doped carbon.

Abstract

Single atom (SA)-embedded nitrogen-doped carbon has shown great potential in environmental remediation. Nowadays, engineered nanomaterials (ENMs) have attracted great research interests in recent years. Metal-organic framework (MOF) derived SAs show the advantages of tunable topology and averaged separated active sites. SAs bridge the gap between homogeneous and heterogeneous catalysts. The reaction efficiency can be significantly improved by designing the MOFs derived from carbon and SAs. In this review, the research advanced in MOFs-derived carbon and SAs in advanced oxidation process (AOP) in water were summarized. Major strategies to fabricate the SAs derived from MOFs were discussed, including the mixed/single metal strategy, metal-containing linker strategy, pore confinement strategy, thermal diffusion strategy, and pyrolysis MOFs with bulk metals. Advanced characterization technologies have been introduced, including electron microscopy and spectroscopic methods. To explain the catalytic mechanism for various applications, the relationship between the performance and the atomic configuration was systematically discussed. Recent applications of the MOFs derived from carbon and SAs have been summarized. A series of the latest work on effectively removing pollutants by SAs are also listed. Based on the fundamental knowledge and recent practical application of MOFs-derived carbon and SAs, some perspectives on the further directions were presented. This review offers guidance for applying novel engineered nanomaterials in the water treatment field.

References

[1]

Shannon, M. A.; Bohn, P. W.; Elimelech, M.; Georgiadis, J. G.; Mariñas, B. J.; Mayes, A. M. Science and technology for water purification in the coming decades. Nature 2008, 452, 301–310.

[2]

Schwarzenbach, R. P.; Escher, B. I.; Fenner, K.; Hofstetter, T. B.; Johnson, A.; von Gunten, U.; Wehrli, B. The challenge of micropollutants in aquatic systems. Science 2006, 313, 1072–1077.

[3]
Vorkamp, K.; Bossi, R.; Bester, K.; Bollmann, U. E.; Boutrup, S. New priority substances of the European water framework directive: Biocides, pesticides and brominated flame retardants in the aquatic environment of Denmark. Sci. Total Environ. 2014, 470471, 459–468.
[4]

Glaze, W. H.; Kang, J. W.; Chapin, D. H. The chemistry of water treatment processes involving ozone, hydrogen peroxide and ultraviolet radiation. Ozone Sci. Eng. 1987, 9, 335–352.

[5]
EPA. Safe drinking water act [Online]. https://www.epa.gov/sdwa (accessed Jan 01, 2022).
[6]

Archer, E.; Petrie, B.; Kasprzyk-Hordern, B.; Wolfaardt, G. M. The fate of pharmaceuticals and personal care products (PPCPs), endocrine disrupting contaminants (EDCs), metabolites and illicit drugs in a WWTW and environmental waters. Chemosphere 2017, 174, 437–446.

[7]

Hao, R. Z.; Zhao, R. T.; Qiu, S. F.; Wang, L. G.; Song, H. B. Antibiotics crisis in China. Science 2015, 348, 1100–1101.

[8]

Stumpf, M.; Ternes, T. A.; Wilken, R. D.; Rodrigues, S. V. Baumann, W. Polar drug residues in sewage and natural waters in the state of Rio de Janeiro, Brazil. Sci. Total Environ. 1999, 225, 135–141.

[9]
Contaminants candidate list (CCL) [Online]. https://www.epa.gov/ccl (accessed Jul 19, 2021).
[10]

Hodges, B. C.; Cates, E. L.; Kim, J. H. Challenges and prospects of advanced oxidation water treatment processes using catalytic nanomaterials. Nat. Nanotechnol. 2018, 13, 642–650.

[11]

Alsbaiee, A.; Smith, B. J.; Xiao, L. L.; Ling, Y. H.; Helbling, D. E.; Dichtel, W. R. Rapid removal of organic micropollutants from water by a porous β-cyclodextrin polymer. Nature 2016, 529, 190–194.

[12]

Gang, D.; Uddin Ahmad, Z.; Lian, Q. Y.; Yao, L. G.; Zappi, M. E. A review of adsorptive remediation of environmental pollutants from aqueous phase by ordered mesoporous carbon. Chem. Eng. J. 2021, 403, 126286.

[13]

Ji, W.; Xiao, L. L.; Ling, Y. H.; Ching, C.; Matsumoto, M.; Bisbey, R. P.; Helbling, D. E.; Dichtel, W. R. Removal of GenX and perfluorinated alkyl substances from water by amine-functionalized covalent organic frameworks. J. Am. Chem. Soc. 2018, 140, 12677–12681.

[14]

Seo, P. W.; Bhadra, B. N.; Ahmed, I.; Khan, N. A.; Jhung, S. H. Adsorptive removal of pharmaceuticals and personal care products from water with functionalized metal-organic frameworks: Remarkable adsorbents with hydrogen-bonding abilities. Sci. Rep. 2016, 6, 34462.

[15]

Liu, Y. B.; Gao, G. D.; Vecitis, C. D. Prospects of an electroactive carbon nanotube membrane toward environmental applications. Acc. Chem. Res. 2020, 53, 2892–2902.

[16]

Liu, Y. M.; Quan, X.; Fan, X. F.; Wang, H.; Chen, S. High-yield electrosynthesis of hydrogen peroxide from oxygen reduction by hierarchically porous carbon. Angew. Chem., Int. Ed. 2015, 54, 6837–6841.

[17]

Ganiyu, S. O.; Zhou, M. G.; Martínez-Huitle, C. A. Heterogeneous electro-Fenton and photoelectro-Fenton processes: A critical review of fundamental principles and application for water/wastewater treatment. Appl. Catal. B Environ. 2018, 235, 103–129.

[18]

Liu, F. Q.; Liu, Y. B.; Yao, Q. F.; Wang, Y. X.; Fang, X. F.; Shen, C. S.; Li, F.; Huang, M. H.; Wang, Z. W.; Sand, W. et al. Supported atomically-precise gold nanoclusters for enhanced flow-through electro-Fenton. Environ. Sci. Technol. 2020, 54, 5913–5921.

[19]

Hu, J. J.; Wang, S.; Yu, J. Q.; Nie, W. K.; Sun, J.; Wang, S. B. Duet Fe3C and FeNx sites for H2O2 generation and activation toward enhanced electro-Fenton performance in wastewater treatment. Environ. Sci. Technol. 2021, 55, 1260–1269.

[20]

Qian, L.; Kopinke, F. D.; Georgi, A. Photodegradation of perfluorooctanesulfonic acid on Fe-zeolites in water. Environ. Sci. Technol. 2021, 55, 614–622.

[21]

Wang, C. C.; Li, J. R.; Lv, X. L.; Zhang, Y. Q.; Guo, G. S. Photocatalytic organic pollutants degradation in metal-organic frameworks. Energy Environ. Sci. 2014, 7, 2831–2867.

[22]

Yang, Z. C.; Qian, J. S.; Yu, A. Q.; Pan, B. C. Singlet oxygen mediated iron-based Fenton-like catalysis under nanoconfinement. Proc. Natl. Acad. Sci. USA 2019, 116, 6659–6664.

[23]

Yang, Z. C.; Shan, C.; Pan, B. C.; Pignatello, J. J. The Fenton reaction in water assisted by picolinic acid: Accelerated iron cycling and Co-generation of a selective Fe-based oxidant. Environ. Sci. Technol. 2021, 55, 8299–8308.

[24]

Xu, S. Q.; Zhu, H. X.; Cao, W. R.; Wen, Z. B.; Wang, J. N.; François-Xavier, C. P.; Wintgens, T. Cu-Al2O3-g-C3N4 and Cu-Al2O3-C-dots with dual-reaction centers for simultaneous enhancement of Fenton-like catalytic activity and selective H2O2 conversion to hydroxyl radicals. Appl. Catal. B Environ. 2018, 234, 223–233.

[25]

Wardman, P. Reduction potentials of one-electron couples involving free radicals in aqueous solution. J. Phys. Chem. Ref. Data 1989, 18, 1637–1755.

[26]

Qian, Y. T.; Zhang, F. F.; Pang, H. A review of MOFs and their composites-based photocatalysts: Synthesis and applications. Adv. Funct. Mater. 2021, 31, 2104231.

[27]

Xu, J. X.; Olvera-Vargas, H.; Loh, B. J. H.; Lefebvre, O. FTO-TiO2 photoelectrocatalytic degradation of triphenyltin chloride coupled to photoelectro-Fenton: A mechanistic study. Appl. Catal. B Environ. 2020, 271, 118923.

[28]

Duan, P. J.; Ma, T. F.; Yue, Y.; Li, Y. W.; Zhang, X.; Shang, Y. N.; Gao, B. Y.; Zhang, Q. Z.; Yue, Q. Y.; Xu, X. Fe/Mn nanoparticles encapsulated in nitrogen-doped carbon nanotubes as a peroxymonosulfate activator for acetamiprid degradation. Environ. Sci. Nano 2019, 6, 1799–1811.

[29]

Peng, L. J.; Shang, Y. N.; Gao, B. Y.; Xu, X. Co3O4 anchored in N, S heteroatom co-doped porous carbons for degradation of organic contaminant: Role of pyridinic N-Co binding and high tolerance of chloride. Appl. Catal. B Environ. 2021, 282, 119484.

[30]

Thomas, J. K. Rates of reaction of the hydroxyl radical. Trans. Faraday Soc. 1965, 61, 702–707.

[31]

Staehelin, J.; Hoigne, J. Decomposition of ozone in water: Rate of initiation by hydroxide ions and hydrogen peroxide. Environ. Sci. Technol. 1982, 16, 676–681.

[32]

Brillas, E.; Sirés, I.; Oturan, M. A. Electro-Fenton process and related electrochemical technologies based on Fenton’s reaction chemistry. Chem. Rev. 2009, 109, 6570–6631.

[33]

Neyens, E.; Baeyens, J. A review of classic Fenton’s peroxidation as an advanced oxidation technique. J. Hazard. Mater. 2003, 98, 33–50.

[34]

Zhou, X. M.; Yang, H. C.; Wang, C. X.; Mao, X. B.; Wang, Y. S.; Yang, Y. L.; Liu, G. Visible light induced photocatalytic degradation of Rhodamine B on one-dimensional iron oxide particles. J. Phys. Chem. C 2010, 114, 17051–17061.

[35]

Xu, J. W.; Zheng, X. L.; Feng, Z. P.; Lu, Z. Y.; Zhang, Z. W.; Huang, W.; Li, Y. B.; Vuckovic, D.; Li, Y. Q.; Dai, S. et al. Organic wastewater treatment by a single-atom catalyst and electrolytically produced H2O2. Nat. Sustain. 2021, 4, 233–241.

[36]

Chen, Y.; Zhang, G.; Liu, H. J.; Qu, J. H. Confining free radicals in close vicinity to contaminants enables ultrafast Fenton-like processes in the interspacing of MoS2 membranes. Angew. Chem., Int. Ed. 2019, 58, 8134–8138.

[37]

Zhao, H.; Chen, Y.; Peng, Q.; Wang, Q.; Zhao, G. Catalytic activity of MOF(2Fe/Co)/carbon aerogel for improving H2O2 and ·OH generation in solar photo-electro-Fenton process. Appl. Catal. B Environ. 2017, 203, 127–137.

[38]

Clark, C. A.; Heck, K. N.; Powell, C. D.; Wong, M. S. Highly defective UiO-66 materials for the adsorptive removal of perfluorooctanesulfonate. ACS Sustainable Chem. Eng. 2019, 7, 6619–6628.

[39]

Li, X.; Yao, Y. L.; Wang, B. Incorporating Fe-O cluster in multivariate (MTV) metal-organic frameworks for promoting visible-light photo-Fenton degradation of micropollutants from water. Chem. Eng. J. 2022, 446, 137446.

[40]

Cao, Y. H.; Li, X.; Wang, B. Ultrafast and selective adsorption of pharmaceuticals from wastewater by precisely designed metal organic framework with missing linker defects. J. Clean. Prod. 2022, 380, 135060.

[41]

Li, X. H.; Li, X.; Wang, B. H2O2 activation by two-dimensional metal-organic frameworks with different metal nodes for micropollutants degradation:Metal dependence of boosting reactive oxygen species generation. J. Hazard. Mater. 2022, 440, 129757.

[42]

Cao, Y. H.; Li, X.; Yu, G.; Wang, B. Regulating defective sites for pharmaceuticals selective removal: Structure-dependent adsorption over continuously tunable pores. J. Hazard. Mater. 2023, 442, 130025.

[43]

Li, X.; Chen, X. G.; Lv, Z. Y.; Wang, B. Ultrahigh ciprofloxacin accumulation and visible-light photocatalytic degradation: Contribution of metal organic frameworks carrier in magnetic surface molecularly imprinted polymers. J. Colloid Interface Sci. 2022, 616, 872–885.

[44]

Li, X.; Wang, B.; Cao, Y. H.; Zhao, S.; Wang, H.; Feng, X.; Zhou, J. W.; Ma, X. J. Water contaminant elimination based on metal-organic frameworks and perspective on their industrial applications. ACS Sustainable Chem. Eng. 2019, 7, 4548–4563.

[45]

Mi, X.; Li, X. Construction of a stable porous composite with tunable graphene oxide in Ce-based-MOFs for enhanced solar-photocatalytic degradation of sulfamethoxazole in water. Sep. Purif. Technol. 2022, 301, 122006.

[46]

Li, X.; Chen, X. G.; Wang, B.; Yu, G. Boosting Fe(II) generation in MOFs under visible-light irradiation for accumulated micropollutants decomposition. J. Environ. Chem. Eng. 2022, 10, 108833.

[47]

Li, X.; Gan, X. Y. Photo-Fenton degradation of multiple pharmaceuticals at low concentrations via Cu-doped-graphitic carbon nitride (g-C3N4) under simulated solar irradiation at a wide pH range. J. Environ. Chem. Eng. 2022, 10, 108290.

[48]

Li, Y. Y.; Li, X.; Xu, X. Y.; Wang, B. Mass transfer enhancement for rapid, selective extraction of pharmaceuticals by enlarging the microporous on isostructural zeolitic imidazolate framework-8. Sep. Purif. Technol. 2022, 293, 121102.

[49]

Li, Y. Y.; Li, X.; Wang, B. Constructing tunable coordinatively unsaturated sites in Fe-based metal-organic framework for effective degradation of pharmaceuticals in water: Performance and mechanism. Chemosphere 2023, 310, 136816.

[50]

Suh, M. J.; Weon, S.; Li, R. Y.; Wang, P.; Kim, J. H. Enhanced pollutant adsorption and regeneration of layered double hydroxide-based photoregenerable adsorbent. Environ. Sci. Technol. 2020, 54, 9106–9115.

[51]

Huang, D. H.; Wang, K. X.; Niu, J. F.; Chu, C. H.; Weon, S.; Zhu, Q. H.; Lu, J. J.; Stavitski, E.; Kim, J. H. Amorphous Pd-loaded Ti4O7 electrode for direct anodic destruction of perfluorooctanoic acid. Environ. Sci. Technol. 2020, 54, 10954–10963.

[52]

Klet, R. C.; Tussupbayev, S.; Borycz, J.; Gallagher, J. R.; Stalzer, M. M.; Miller, J. T.; Gagliardi, L.; Hupp, J. T.; Marks, T. J.; Cramer, C. J. et al. Single-site organozirconium catalyst embedded in a metal-organic framework. J. Am. Chem. Soc. 2015, 137, 15680–15683.

[53]

Cheung, Y. H.; Ma, K. K.; van Leeuwen, H. C.; Wasson, M. C.; Wang, X. J.; Idrees, K. B.; Gong, W.; Cao, R.; Mahle, J. J.; Islamoglu, T. et al. Immobilized regenerable active chlorine within a zirconium-based MOF textile composite to eliminate biological and chemical threats. J. Am. Chem. Soc. 2021, 143, 16777–16785.

[54]

Tranchemontagne, D. J.; Mendoza-Cortés, J. L.; O'Keeffe, M.; Yaghi, O. M. Secondary building units, nets and bonding in the chemistry of metal-organic frameworks. Chem. Soc. Rev. 2009, 38, 1257–1283.

[55]

Furukawa, H.; Cordova, K. E.; O’Keeffe, M.; Yaghi, O. M. The chemistry and applications of metal-organic frameworks. Science 2013, 341, 1230444.

[56]

Wang, L. J.; Deng, H. X.; Furukawa, H.; Gandara, F.; Cordova, K. E.; Peri, D.; Yaghi, O. M. Synthesis and characterization of metal-organic framework-74 containing 2, 4, 6, 8, and 10 different metals. Inorg. Chem. 2014, 53, 5881–5883.

[57]

Rojas, S.; Horcajada, P. Metal-organic frameworks for the removal of emerging organic contaminants in water. Chem. Rev. 2020, 120, 8378–8415.

[58]

Drout, R. J.; Robison, L.; Chen, Z. J.; Islamoglu, T.; Farha, O. K. Zirconium metal-organic frameworks for organic pollutant adsorption. Trends Chem. 2019, 1, 304–317.

[59]

Cai, G. R.; Jiang, H. L. A modulator-induced defect-formation strategy to hierarchically porous metal-organic frameworks with high stability. Angew. Chem., Int. Ed. 2017, 56, 563–567.

[60]

Xiao, J. D.; Jiang, H. L. Metal-organic frameworks for photocatalysis and photothermal catalysis. Acc. Chem. Res. 2019, 52, 356–366.

[61]

Ma, X.; Wang, L.; Zhang, Q.; Jiang, H. L. Switching on the photocatalysis of metal-organic frameworks by engineering structural defects. Angew. Chem., Int. Ed. 2019, 58, 12175–12179.

[62]

Jiao, L.; Yang, W. J.; Wan, G.; Zhang, R.; Zheng, X. S.; Zhou, H.; Yu, S. H.; Jiang, H. L. Single-atom electrocatalysts from multivariate metal-organic frameworks for highly selective reduction of CO2 at low pressures. Angew. Chem., Int. Ed. 2020, 59, 20589–20595.

[63]

Liu, B.; Shioyama, H.; Akita, T.; Xu, Q. Metal-organic framework as a template for porous carbon synthesis. J. Am. Chem. Soc. 2008, 130, 5390–5391.

[64]

Qiao, B. T.; Wang, A. Q.; Yang, X. F.; Allard, L. F.; Jiang, Z.; Cui, Y. T.; Liu, J. Y.; Li, J.; Zhang, T. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem. 2011, 3, 634–641.

[65]

Chao, T. T.; Luo, X.; Chen, W. X.; Jiang, B.; Ge, J. J.; Lin, Y.; Wu, G.; Wang, X. Q.; Hu, Y. M.; Zhuang, Z. B. et al. Atomically dispersed copper-platinum dual sites alloyed with palladium nanorings catalyze the hydrogen evolution reaction. Angew. Chem., Int. Ed. 2017, 56, 16047–16051.

[66]

Chen, W. X.; Pei, J. J.; He, C. T.; Wan, J. W.; Ren, H. L.; Wang, Y.; Dong, J. C.; Wu, K. L.; Cheong, W. C.; Mao, J. J. et al. Single Tungsten atoms supported on MOF-derived N-doped carbon for robust electrochemical hydrogen evolution. Adv. Mater. 2018, 30, 1800396.

[67]

Jiang, Z. L.; Song, S. J.; Zheng, X. B.; Liang, X.; Li, Z. X.; Gu, H. F.; Li, Z.; Wang, Y.; Liu, S. H.; Chen, W. X. et al. Lattice strain and Schottky junction dual regulation boosts ultrafine ruthenium nanoparticles anchored on a N-modified carbon catalyst for H2 production. J. Am. Chem. Soc. 2022, 144, 19619–19626.

[68]

Zhao, Y. F.; Zhou, H.; Chen, W. X.; Tong, Y. J.; Zhao, C.; Lin, Y.; Jiang, Z.; Zhang, Q. W.; Xue, Z. G.; Cheong, W. C. et al. Two-step carbothermal welding to access atomically dispersed Pd1 on three-dimensional zirconia nanonet for direct indole synthesis. J. Am. Chem. Soc. 2019, 141, 10590–10594.

[69]

Su, X. Z.; Jiang, Z. L.; Zhou, J.; Liu, H. J.; Zhou, D. N.; Shang, H. S.; Ni, X. M.; Peng, Z.; Yang, F.; Chen, W. X. et al. Complementary operando spectroscopy identification of in-situ generated metastable charge-asymmetry Cu2-CuN3 clusters for CO2 reduction to ethanol. Nat. Commun. 2022, 13, 1322.

[70]

Yao, Y. C.; Hu, S. L.; Chen, W. X.; Huang, Z. Q.; Wei, W. C.; Yao, T.; Liu, R. R.; Zang, K. T.; Wang, X. Q.; Wu, G. et al. Engineering the electronic structure of single atom Ru sites via compressive strain boosts acidic water oxidation electrocatalysis. Nat. Catal. 2019, 2, 304–313.

[71]

Shang, H. S.; Zhou, X. Y.; Dong, J. C.; Li, A.; Zhao, X.; Liu, Q. H.; Lin, Y.; Pei, J. J.; Li, Z.; Jiang, Z. L. et al. Engineering unsymmetrically coordinated Cu-S1N3 single atom sites with enhanced oxygen reduction activity. Nat. Commun. 2020, 11, 3049.

[72]

Zitolo, A.; Goellner, V.; Armel, V.; Sougrati, M. T.; Mineva, T.; Stievano, L.; Fonda, E.; Jaouen, F. Identification of catalytic sites for oxygen reduction in iron- and nitrogen-doped graphene materials. Nat. Mater. 2015, 14, 937–942.

[73]

Jiao, L.; Jiang, H. L. Metal-organic-framework-based single-atom catalysts for energy applications. Chem 2019, 5, 786–804.

[74]

Wang, Y.; Zheng, X. B.; Wang, D. S. Design concept for electrocatalysts. Nano Res. 2022, 15, 1730–1752.

[75]

Li, W. H.; Yang, J. R.; Wang, D. S. Long-range interactions in diatomic catalysts boosting electrocatalysis. Angew. Chem., Int. Ed. 2022, 61, e202213318.

[76]

Zhu, P.; Xiong, X.; Wang, D. S. Regulations of active moiety in single atom catalysts for electrochemical hydrogen evolution reaction. Nano Res. 2022, 15, 5792–5815.

[77]

Zhang, E. H.; Tao, L.; An, J. K.; Zhang, J. W.; Meng, L. Z.; Zheng, X. B.; Wang, Y.; Li, N.; Du, S. X.; Zhang, J. X. et al. Engineering the local atomic environments of indium single-atom catalysts for efficient electrochemical production of hydrogen peroxide. Angew. Chem., Int. Ed. 2022, 61, e202117347.

[78]

Zhang, E. H.; Hu, X.; Meng, L. Z.; Qiu, M.; Chen, J. X.; Liu, Y. J.; Liu, G. Y.; Zhuang, Z. C.; Zheng, X. B.; Zheng, L. R. et al. Single-atom yttrium engineering Janus electrode for rechargeable Na-S batteries. J. Am. Chem. Soc. 2022, 144, 18995–19007.

[79]

Zhang, Z. D.; Zhu, J. X.; Chen, S. H.; Sun, W. M.; Wang, D. S. Liquid fluxional Ga single atom catalysts for efficient electrochemical CO2 reduction. Angew. Chem., Int. Ed. 2023, 62, e202215136.

[80]

Meng, L. Z.; Zhang, E. H.; Peng, H. Y.; Wang, Y.; Wang, D. S.; Rong, H. P.; Zhang, J. T. Bi/Zn dual single-atom catalysts for electroreduction of CO2 to syngas. ChemCatChem 2022, 14, e202101801.

[81]

Chen, F.; Wu, X. L.; Shi, C. Y.; Lin, H. J.; Chen, J. R.; Shi, Y. P.; Wang, S. B.; Duan, X. G. Molecular engineering toward pyrrolic N-rich M-N4 (M = Cr, Mn, Fe, Co, Cu) single-atom sites for enhanced heterogeneous Fenton-like reaction. Adv. Funct. Mater. 2021, 31, 2007877.

[82]

Li, X. N.; Huang, X.; Xi, S. B.; Miao, S.; Ding, J.; Cai, W. Z.; Liu, S.; Yang, X. L.; Yang, H. B.; Gao, J. J. et al. Single cobalt atoms anchored on porous n-doped graphene with dual reaction sites for efficient Fenton-like catalysis. J. Am. Chem. Soc. 2018, 140, 12469–12475.

[83]

Shang, H. S.; Wang, T.; Pei, J. J.; Jiang, Z. L.; Zhou, D. N.; Wang, Y.; Li, H. J.; Dong, J. C.; Zhuang, Z. B.; Chen, W. X. et al. Design of a single-atom indiumδ+-N4 interface for efficient electroreduction of CO2 to formate. Angew. Chem., Int. Ed. 2020, 59, 22465–22469.

[84]

Liu, S. M.; Xue, W. J.; Ji, Y. J.; Xu, W. Q.; Chen, W. X.; Jia, L. H.; Zhu, T. Y.; Zhong, Z. Y.; Xu, G. W.; Mei, D. H. et al. Interfacial oxygen vacancies at Co3O4-CeO2 heterointerfaces boost the catalytic reduction of NO by CO in the presence of O2. Appl. Catal. B Environ. 2023, 323, 122151.

[85]

Xie, X. H.; He, C.; Li, B. Y.; He, Y. H.; Cullen, D. A.; Wegener, E. C.; Kropf, A.; Martinez, U.; Cheng, Y. W.; Engelhard, M. H. et al. Performance enhancement and degradation mechanism identification of a single-atom Co-N-C catalyst for proton exchange membrane fuel cells. Nat. Catal. 2020, 3, 1044–1054.

[86]

Shang, Y. N.; Xu, X.; Gao, B. Y.; Wang, S. B.; Duan, X. G. Single-atom catalysis in advanced oxidation processes for environmental remediation. Chem. Soc. Rev. 2021, 50, 5281–5322.

[87]

Chu, C. H.; Yang, J.; Zhou, X. C.; Huang, D. H.; Qi, H. F.; Weon, S.; Li, J. F.; Elimelech, M.; Wang, A. Q.; Kim, J. H. Cobalt single atoms on tetrapyridomacrocyclic support for efficient peroxymonosulfate activation. Environ. Sci. Technol. 2021, 55, 1242–1250.

[88]

Gao, Y. W.; Zhu, Y.; Li, T.; Chen, Z. H.; Jiang, Q. K.; Zhao, Z. Y.; Liang, X. Y.; Hu, C. Unraveling the high-activity origin of single-atom iron catalysts for organic pollutant oxidation via peroxymonosulfate activation. Environ. Sci. Technol. 2021, 55, 8318–8328.

[89]

Long, Y. K.; Dai, J.; Zhao, S. Y.; Su, Y. P.; Wang, Z. Y.; Zhang, Z. T. Atomically dispersed cobalt sites on graphene as efficient periodate activators for selective organic pollutant degradation. Environ. Sci. Technol. 2021, 55, 5357–5370.

[90]

Zhao, K.; Quan, X.; Su, Y.; Qin, X.; Chen, S.; Yu, H. T. Enhanced chlorinated pollutant degradation by the synergistic effect between dechlorination and hydroxyl radical oxidation on a bimetallic single-atom catalyst. Environ. Sci. Technol. 2021, 55, 14194–14203.

[91]

Cheng, M.; Zeng, G. M.; Huang, D. L.; Lai, C.; Liu, Y.; Zhang, C.; Wan, J.; Hu, L.; Zhou, C. Y.; Xiong, W. P. Efficient degradation of sulfamethazine in simulated and real wastewater at slightly basic pH values using Co-SAM-SCS/H2O2 Fenton-like system. Water Res. 2018, 138, 7–18.

[92]

Fang, X. Z.; Shang, Q. C.; Wang, Y.; Jiao, L.; Yao, T.; Li, Y. F.; Zhang, Q.; Luo, Y.; Jiang, H. L. Single Pt atoms confined into a metal-organic framework for efficient photocatalysis. Adv. Mater. 2018, 30, 1705112.

[93]

Yang, Q. H.; Yang, C. C.; Lin, C. H.; Jiang, H. L. Metal-organic-framework-derived hollow N-doped porous carbon with ultrahigh concentrations of single Zn atoms for efficient carbon dioxide conversion. Angew. Chem., Int. Ed. 2019, 58, 3511–3515.

[94]

Wang, X. Q.; Chen, Z.; Zhao, X. Y.; Yao, T.; Chen, W. X.; You, R.; Zhao, C. M.; Wu, G.; Wang, J.; Huang, W. X. et al. Regulation of coordination number over single Co sites: Triggering the efficient electroreduction of CO2. Angew. Chem., Int. Ed. 2018, 57, 1944–1948.

[95]

Jiao, L.; Wan, G.; Zhang, R.; Zhou, H.; Yu, S. H.; Jiang, H. L. From metal-organic frameworks to single-atom Fe implanted N-doped porous carbons: Efficient oxygen reduction in both alkaline and acidic media. Angew. Chem., Int. Ed. 2018, 57, 8525–8529.

[96]

Chen, Y. J.; Ji, S. F.; Wang, Y. G.; Dong, J. C.; Chen, W. X.; Li, Z.; Shen, R. A.; Zheng, L. R.; Zhuang, Z. B.; Wang, D. S. et al. Isolated single iron atoms anchored on N-doped porous carbon as an efficient electrocatalyst for the oxygen reduction reaction. Angew. Chem., Int. Ed. 2017, 56, 6937–6941.

[97]

Jones, J.; Xiong, H. F.; DeLaRiva, A. T.; Peterson, E. J.; Pham, H.; Challa, S. R.; Qi, G.; Oh, S.; Wiebenga, M. H. et al. Thermally stable single-atom platinum-on-ceria catalysts via atom trapping. Science 2016, 353, 150–154.

[98]

Yang, J.; Qiu, Z. Y.; Zhao, C. M.; Wei, W. C.; Chen, W. X.; Li, Z. J.; Qu, Y. T.; Dong, J. C.; Luo, J.; Li, Z. Y. et al. In situ thermal atomization to convert supported nickel nanoparticles into surface-bound nickel single-atom catalysts. Angew. Chem., Int. Ed. 2018, 57, 14095–14100.

[99]

Hou, C. C.; Zou, L. L.; Wang, Y.; Xu, Q. MOF-mediated fabrication of a porous 3D superstructure of carbon nanosheets decorated with ultrafine cobalt phosphide nanoparticles for efficient electrocatalysis and zinc-air batteries. Angew. Chem., Int. Ed. 2020, 59, 21360–21366.

[100]

Fan, L. L.; Liu, P. F.; Yan, X. C.; Gu, L.; Yang, Z. Z.; Yang, H. G.; Qiu, S. L.; Yao, X. D. Atomically isolated nickel species anchored on graphitized carbon for efficient hydrogen evolution electrocatalysis. Nat. Commun. 2016, 7, 10667.

[101]

Yan, C. C.; Li, H. B.; Ye, Y. F.; Wu, H. H.; Cai, F.; Si, R.; Xiao, J. P.; Miao, S.; Xie, S. H.; Yang, F. et al. Coordinatively unsaturated nickel-nitrogen sites towards selective and high-rate CO2 electroreduction. Energy Environ. Sci. 2018, 11, 1204–1210.

[102]

Wang, X.; Chen, W. X.; Zhang, L.; Yao, T.; Liu, W.; Lin, Y.; Ju, H. X.; Dong, J. C.; Zheng, L. R.; Yan, W. S. et al. Uncoordinated amine groups of metal-organic frameworks to anchor single Ru sites as chemoselective catalysts toward the hydrogenation of quinoline. J. Am. Chem. Soc. 2017, 139, 9419–9422.

[103]

Zou, L. L.; Wei, Y. S.; Hou, C. C.; Li, C. X.; Xu, Q. Single-atom catalysts derived from metal-organic frameworks for electrochemical applications. Small 2021, 17, 2004809.

[104]

Qu, Y. T.; Li, Z. J.; Chen, W. X.; Lin, Y.; Yuan, T. W.; Yang, Z. K.; Zhao, C. M.; Wang, J.; Zhao, C.; Wang, X. et al. Direct transformation of bulk copper into copper single sites via emitting and trapping of atoms. Nat. Catal. 2018, 1, 781–786.

[105]

Zhang, E. H.; Wang, T.; Yu, K.; Liu, J.; Chen, W. X.; Li, A.; Rong, H. P.; Lin, R.; Ji, S. F.; Zheng, X. S. et al. Bismuth single atoms resulting from transformation of metal-organic frameworks and their use as electrocatalysts for CO2 reduction. J. Am. Chem. Soc. 2019, 141, 16569–16573.

[106]

Wei, S. J.; Li, A.; Liu, J. C.; Li, Z.; Chen, W. X.; Gong, Y.; Zhang, Q. H.; Cheong, W. C.; Wang, Y.; Zheng, L. R. et al. Direct observation of noble metal nanoparticles transforming to thermally stable single atoms. Nat. Nanotechnol. 2018, 13, 856–861.

[107]

Jiang, R.; Li, L.; Sheng, T.; Hu, G. F.; Chen, Y. G.; Wang, L. Y. Edge-site engineering of atomically dispersed Fe-N4 by selective C–N bond cleavage for enhanced oxygen reduction reaction activities. J. Am. Chem. Soc. 2018, 140, 11594–11598.

[108]

Zhou, D. N.; Li, X. Y.; Shang, H. S.; Qin, F. J.; Chen, W. X. Atomic regulation of metal-organic framework derived carbon-based single-atom catalysts for the electrochemical CO2 reduction reaction. J. Mater. Chem. A 2021, 9, 23382–23418.

[109]
Li, J.X., Xu, H.M., Huang, Z.J., Hong, Q.Y, Qiu, Y. X., Yan, N. Q., Qu, Z. Strengthen the affinity of element mercury on the carbon-based material by adjusting the coordination environment of single-site manganese. Environ. Sci. Technol. 2021, 55, 14126–14135.
[110]

Xu, M. Q.; Li, A. W.; Gao, M.; Zhou, W. Single-atom electron microscopy for energy-related nanomaterials. J. Mater. Chem. A 2020, 8, 16142–16165.

[111]

Zhang, H. G.; Hwang, S.; Wang, M. Y.; Feng, Z. X.; Karakalos, S.; Luo, L. L.; Qiao, Z.; Xie, X. H.; Wang, C. M.; Su, D. et al. Single atomic iron catalysts for oxygen reduction in acidic media: Particle size control and thermal activation. J. Am. Chem. Soc. 2017, 139, 14143–14149.

[112]

Bressler, C.; Chergui, M. Ultrafast X-ray absorption spectroscopy. Chem. Rev. 2004, 104, 1781–1812.

[113]

Wang, B. Q.; Cheng, C.; Jin, M. M.; He, J.; Zhang, H.; Ren, W.; Li, J.; Wang, D. S.; Li, Y. D. A site distance effect induced by reactant molecule matchup in single-atom catalysts for Fenton-like reactions. Angew. Chem., Int. Ed. 2022, 61, e202207268.

[114]

Xiong, Y.; Li, H. C.; Liu, C. W.; Zheng, L. R.; Liu, C.; Wang, J. O.; Liu, S. J.; Han, Y. H.; Gu, L.; Qian, J. S. et al. Single-atom Fe catalysts for Fenton-like reactions: Roles of different N species. Adv. Mater. 2022, 34, 2110653.

[115]

Li, X. N.; Ao, Z. M.; Liu, J. Y.; Sun, H. Q.; Rykov, A. I.; Wang, J. H. Topotactic transformation of metal-organic frameworks to graphene-encapsulated transition-metal nitrides as efficient Fenton-like catalysts. ACS Nano 2016, 10, 11532–11540.

[116]

Zandi, O.; Hamann, T. W. Determination of photoelectrochemical water oxidation intermediates on haematite electrode surfaces using operando infrared spectroscopy. Nat. Chem. 2016, 8, 778–783.

[117]
Chen, T.; Wu, G. P.; Feng, Z. C.; Hu, G. S.; Su, W. G.; Ying, P. L.; Li, C. In situ FT-IR study of photocatalytic decomposition of formic acid to hydrogen on Pt/TiO2 catalyst. Chin. J. Catal. 2008, 29, 105–107.
[118]
Pei, J. J.; Wang, T.; Sui, R.; Zhang, X. J.; Zhou, D. N.; Qin, F. J.; Zhao, X.; Liu, Q. H.; Yan, W. S.; Dong, J. C. et al. N-bridged Co-N-Ni: New bimetallic sites for promoting electrochemical CO2 reduction. Energy Environ. Sci. 2021, 14, 3019–3028.
[119]
Qin, X.,Cao, P.K., Quan, X., Zhao, K., Chen, S., Yu, H.T., Su, Y. Highly efficient hydroxyl radicals production boosted by the atomically dispersed Fe and Co sites for heterogeneous electro-fenton oxidation. Environ. Sci. Technol.. 2023, 57, 2907–2917.
[120]

Kwak, J. H.; Hu, J. Z.; Mei, D. C.; Yi, C. W.; Kim, D. H.; Peden, C. H. F.; Allard, L. F.; Szanyi, J. Coordinatively unsaturated Al3+ centers as binding sites for active catalyst phases of platinum on γ-Al2O3. Science 2009, 325, 1670–1673.

[121]

Corma, A.; Salnikov, O. G.; Barskiy, D. A.; Kovtunov, K. V.; Koptyug, I. V. Single-atom gold catalysis in the context of developments in parahydrogen-induced polarization. Chem. -Eur. J. 2015, 21, 7012–7015.

[122]

Liu, D.; Gu, W. Y.; Zhou, L.; Wang, L. Z.; Zhang, J. L.; Liu, Y. D.; Lei, J. Y. Recent advances in MOF-derived carbon-based nanomaterials for environmental applications in adsorption and catalytic degradation. Chem. Eng. J. 2022, 427, 131503.

[123]

Cao, X. H.; Zheng, B.; Rui, X. H.; Shi, W. H.; Yan, Q. Y.; Zhang, H. Metal oxide-coated three-dimensional graphene prepared by the use of metal-organic frameworks as precursors. Angew. Chem., Int. Ed. 2014, 53, 1404–1409.

[124]

Chen, H. R.; Shen, K.; Chen, J. Y.; Chen, X. D.; Li, Y. W. Hollow-ZIF-templated formation of a ZnO@C-N-Co core–shell nanostructure for highly efficient pollutant photodegradation. J. Mater. Chem. A 2017, 5, 9937–9945.

[125]

Chen, Y. Z.; Wang, C. M.; Wu, Z. Y.; Xiong, Y. J.; Xu, Q.; Yu, S. H.; Jiang, H. L. From bimetallic metal-organic framework to porous carbon: High surface area and multicomponent active dopants for excellent electrocatalysis. Adv. Mater. 2015, 27, 5010–5016.

[126]

Huang, P. F.; Lei, J. W.; Sun, Z. R.; Hu, X. Fabrication of MOF-derivated CuOx-C electrode for electrochemical degradation of ceftazidime from aqueous solution. Chemosphere 2021, 268, 129157.

[127]

Singh, B.; Gawande, M. B.; Kute, A. D.; Varma, R. S.; Fornasiero, P.; McNeice, P.; Jagadeesh, R. V.; Beller, M.; Zbořil, R. Single-atom (iron-based) catalysts: Synthesis and applications. Chem. Rev. 2021, 121, 13620–13697.

[128]

Su, L. N.; Wang, P. F.; Ma, X. L.; Wang, J. H.; Zhan, S. H. Regulating local electron density of Iron single sites by introducing nitrogen vacancies for efficient photo-Fenton process. Angew. Chem., Int. Ed. 2021, 60, 21261–21266.

[129]

Miao, J.; Zhu, Y.; Lang, J. Y.; Zhang, J. Z.; Cheng, S. X.; Zhou, B. X.; Zhang, L. Z.; Alvarez, P. J. J.; Long, M. C. Spin-state-dependent peroxymonosulfate activation of single-atom M-N moieties via a radical-free pathway. ACS Catal. 2021, 11, 9569–9577.

[130]

Wang, J. Y.; Xu, M.; Liang, X.; Zhang, Y.; Yang, D. D.; Pan, L.; Fang, W. Y.; Zhu, C. G.; Wang, F. W. Development of a novel 2D Ni-MOF derived NiO@C nanosheet arrays modified Ti/TiO2NTs/PbO2 electrode for efficient electrochemical degradation of salicylic acid wastewater. Sep. Purif. Technol. 2021, 263, 118368.

[131]

Tang, J. T.; Wang, J. L. MOF-derived three-dimensional flower-like FeCu@C composite as an efficient Fenton-like catalyst for sulfamethazine degradation. Chem. Eng. J. 2019, 375, 122007.

[132]

Chen, D. Z.; Chen, S. S.; Jiang, Y. J.; Xie, S. S.; Quan, H. Y.; Hua, L.; Luo, X. B.; Guo, L. Heterogeneous Fenton-like catalysis of Fe-MOF derived magnetic carbon nanocomposites for degradation of 4-nitrophenol. RSC Adv. 2017, 7, 49024–49030.

[133]

Yang, S. J.; Qiu, X. J.; Jin, P. K.; Dzakpasu, M.; Wang, X. C.; Zhang, Q. H.; Zhang, L.; Yang, L.; Ding, D. H.; Wang, W. D. et al. MOF-templated synthesis of CoFe2O4 nanocrystals and its coupling with peroxymonosulfate for degradation of bisphenol A. Chem. Eng. J. 2018, 353, 329–339.

Nano Research
Pages 10326-10341
Cite this article:
Li X, Wang B. Atomic regulations of single atom from metal-organic framework derived carbon for advanced water treatment. Nano Research, 2023, 16(7): 10326-10341. https://doi.org/10.1007/s12274-023-5616-z
Topics:

940

Views

8

Crossref

10

Web of Science

9

Scopus

0

CSCD

Altmetrics

Received: 25 January 2023
Revised: 13 February 2023
Accepted: 23 February 2023
Published: 19 April 2023
© Tsinghua University Press 2023
Return