Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Electrochemical NO reduction reaction (NORR) to NH3 emerges as a fascinating approach to achieve both the migration of NO pollutant and the green synthesis of NH3. In this contribution, within the framework of computational hydrogen model and constant-potential implicit solvent model, the NORR electrocatalyzed by a novel transition-metal-anchored SnOSe armchair nanotube (TM@SnOSe_ANT) was investigated using density functional theory calculations. Through the checking in terms of stability, activity, and selectivity, Sc- and Y@SnOSe_ANTs were screened out from the twenty-five candidates. Considering the effects of pH, solvent environment, as well as applied potential, only Sc@SnOSe_ANT is found to be most promising. The predicted surface area normalized capacitance is 11.4 μF/cm2, and the highest NORR performance can be achieved at the URHE of −0.58 V in the acid environment. The high activity originates from the mediate adsorption strength of OH. These findings add a new perspective that the nanotube can be served as a highly promising electrocatalyst towards NORR.
Meng, D. M.; Zhan, W. C.; Guo, Y.; Guo, Y. L.; Wang, L.; Lu, G. Z. A highly effective catalyst of Sm-MnOx for the NH3-SCR of NOx at low temperature: Promotional role of Sm and its catalytic performance. ACS Catal. 2015, 5, 5973–5983.
Long, J.; Chen, S. M.; Zhang, Y. L.; Guo, C. X.; Fu, X. Y.; Deng, D. H.; Xiao, J. P. Direct electrochemical ammonia synthesis from nitric oxide. Angew. Chem., Int. Ed. 2020, 59, 9711–9718.
Lee, T.; Bai, H. Low temperature selective catalytic reduction of NOx with NH3 over Mn-based catalyst: A review. AIMS Environ. Sci. 2016, 3, 261–289.
Topsøe, N. Y. Mechanism of the selective catalytic reduction of nitric oxide by ammonia elucidated by in situ on-line Fourier transform infrared spectroscopy. Science 1994, 265, 1217–1219.
Ma, S. B.; Zhao, X. Y.; Li, Y. S.; Zhang, T. R.; Yuan, F. L.; Niu, X. Y.; Zhu, Y. J. Effect of W on the acidity and redox performance of the Cu0.02Fe0.2WaTiOx (a = 0.01, 0.02, 0.03) catalysts for NH3-SCR of NO. Appl. Catal. B:Environ. 2019, 248, 226–238.
Tursun, M.; Wu, C. Vacancy-triggered and dopant-assisted NO electrocatalytic reduction over MoS2. Phys. Chem. Chem. Phys. 2021, 23, 19872–19883.
Liang, J.; Hu, W. F.; Song, B. Y.; Mou, T.; Zhang, L. C.; Luo, Y. S.; Liu, Q.; Alshehri, A. A.; Hamdy, M. S.; Yang, L. M. et al. Efficient nitric oxide electroreduction toward ambient ammonia synthesis catalyzed by a CoP nanoarray. Inorg. Chem. Front. 2022, 9, 1366–1372.
de Vooys, A. C. A.; Koper, M. T. M.; van Santen, R. A.; van Veen, J. A. R. Mechanistic study of the nitric oxide reduction on a polycrystalline platinum electrode. Electrochim. Acta 2001, 46, 923–930.
Farberow, C. A.; Dumesic, J. A.; Mavrikakis, M. Density functional theory calculations and analysis of reaction pathways for reduction of nitric oxide by hydrogen on Pt (111). ACS Catal. 2014, 4, 3307–3319.
Katsounaros, I.; Figueiredo, M. C.; Chen, X. T.; Calle-Vallejo, F.; Koper, M. T. M. Structure- and coverage-sensitive mechanism of NO reduction on platinum electrodes. ACS Catal. 2017, 7, 4660–4667.
Liu, N.; Wang, X. Y.; Wan, Y. L. First principle calculations of nitric oxide on metallic Pt (111) and Pt (100), and bimetallic Au/Pt (111) and Au/Pt (100) surfaces. Appl. Surf. Sci. 2015, 328, 591–595.
Qiao, B. T.; Wang, A. Q.; Yang, X. F.; Allard, L. F.; Jiang, Z.; Cui, Y. T.; Liu, J. Y.; Li, J.; Zhang, T. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem. 2011, 3, 634–641.
Zhang, B.; Fan, T. J.; Xie, N.; Nie, G. H.; Zhang, H. Versatile applications of metal single-atom@2D material nanoplatforms. Adv. Sci. 2019, 6, 1901787.
Zhang, N. Q.; Ye, C. L.; Yan, H.; Li, L. C.; He, H.; Wang, D. S.; Li, Y. D. Single-atom site catalysts for environmental catalysis. Nano Res. 2020, 13, 3165–3182.
Liu, P. X.; Zhao, Y.; Qin, R. X.; Mo, S. G.; Chen, G. X.; Gu, L.; Chevrier, D. M.; Zhang, P.; Guo, Q.; Zang, D. D. et al. Photochemical route for synthesizing atomically dispersed palladium catalysts. Science 2016, 352, 797–800.
Zhang, H. B.; Liu, G. G.; Shi, L.; Ye, J. H. Single-atom catalysts: Emerging multifunctional materials in heterogeneous catalysis. Adv. Energy Mater. 2018, 8, 1701343.
Li, Z.; Ji, S. F.; Liu, Y. W.; Cao, X.; Tian, S. B.; Chen, Y. J.; Niu, Z. Q.; Li, Y. D. Well-defined materials for heterogeneous catalysis: From nanoparticles to isolated single-atom sites. Chem. Rev. 2020, 120, 623–682.
Liu, J. Y. Catalysis by supported single metal atoms. ACS Catal. 2017, 7, 34–59.
Chen, Z.; Zhao, J. X.; Cabrera, C. R.; Chen, Z. F. Computational screening of efficient single-atom catalysts based on graphitic carbon nitride (g-C3N4) for nitrogen electroreduction. Small Methods 2019, 3, 1800368.
Zhang, Q. Q.; Guan, J. Q. Applications of single-atom catalysts. Nano Res. 2022, 15, 38–70.
Wu, H.; Li, X. X.; Zhang, R. Q.; Yang, J. L. Proposal of a stable B3S nanosheet as an efficient hydrogen evolution catalyst. J. Mater. Chem. A 2019, 7, 3752–3756.
Lv, X. S.; Wei, W.; Zhao, P.; Er, D.; Huang, B. B.; Dai, Y.; Jacob, T. Oxygen-terminated BiXenes and derived single atom catalysts for the hydrogen evolution reaction. J. Catal. 2019, 378, 97–103.
Ji, Y. J.; Dong, H. L.; Hou, T. J.; Li, Y. Y. Monolayer graphitic germanium carbide (g-GeC): The promising cathode catalyst for fuel cell and lithium-oxygen battery applications. J. Mater. Chem. A 2018, 6, 2212–2218.
He, B. L.; Shen, J. S.; Ma, D. W.; Lu, Z. S.; Yang, Z. X. Boron-doped C3N monolayer as a promising metal-free oxygen reduction reaction catalyst: A theoretical insight. J. Phys. Chem. C 2018, 122, 20312–20322.
Zhang, X.; Chen, A.; Zhang, Z. H.; Jiao, M. G.; Zhou, Z. Transition metal anchored C2N monolayers as efficient bifunctional electrocatalysts for hydrogen and oxygen evolution reactions. J. Mater. Chem. A 2018, 6, 11446–11452.
Ling, C. Y.; Shi, L.; Ouyang, Y. X.; Zeng, X. C.; Wang, J. L. Nanosheet supported single-metal atom bifunctional catalyst for overall water splitting. Nano Lett. 2017, 17, 5133–5139.
Gao, G. P.; Jiao, Y.; Waclawik, E. R.; Du, A. J. Single atom (Pd/Pt) supported on graphitic carbon nitride as an efficient photocatalyst for visible-light reduction of carbon dioxide. J. Am. Chem. Soc. 2016, 138, 6292–6297.
Zhang, M.; Hu, Z.; Gu, L.; Zhang, Q. H.; Zhang, L. H.; Song, Q.; Zhou, W.; Hu, S. Electrochemical conversion of CO2 to syngas with a wide range of CO/H2 ratio over Ni/Fe binary single-atom catalysts. Nano Res. 2020, 13, 3206–3211.
Jiang, J. C.; Chen, J. C.; Zhao, M. D.; Yu, Q.; Wang, Y. G.; Li, J. Rational design of copper-based single-atom alloy catalysts for electrochemical CO2 reduction. Nano Res. 2022, 15, 7116–7123.
Choi, C.; Back, S.; Kim, N. Y.; Lim, J.; Kim, Y. H.; Jung, Y. Suppression of hydrogen evolution reaction in electrochemical N2 reduction using single-atom catalysts: A computational guideline. ACS Catal. 2018, 8, 7517–7525.
Ling, C. Y.; Niu, X. H.; Li, Q.; Du, A. J.; Wang, J. L. Metal-free single atom catalyst for N2 fixation driven by visible light. J. Am. Chem. Soc. 2018, 140, 14161–14168.
Chen, Z. W.; Yan, J. M.; Jiang, Q. Single or double: Which is the altar of atomic catalysts for nitrogen reduction reaction. Small Methods 2019, 3, 1800291.
Qin, Y. Y.; Li, Y.; Zhao, W. S.; Chen, S. H.; Wu, T. T.; Su, Y. Q. Computational study of transition metal single-atom catalysts supported on nitrogenated carbon nanotubes for electrocatalytic nitrogen reduction. Nano Res. 2023, 16, 325–333.
Lin, L. H.; Wei, F. F.; Jiang, R.; Huang, Y. C.; Lin, S. The role of central heteroatom in electrochemical nitrogen reduction catalyzed by polyoxometalate-supported single-atom catalyst. Nano Res. 2023, 16, 309–317.
Deng, D.; Song, B. Y.; Li, C.; Yang, L. M. High-throughput screening of transition-metal-atom-embedded parallel tetracyanoethylene 2D networks as single-atom electrocatalysts for ammonia synthesis and its underlying microscopic mechanisms. J. Phys. Chem. C 2022, 126, 20816–20830.
Liu, Y.; Song, B. Y.; Huang, C. X.; Yang, L. M. Dual transition metal atoms embedded in N-doped graphene for electrochemical nitrogen fixation under ambient conditions. J. Mater. Chem. A 2022, 10, 13527–13543.
Lv, S. Y.; Li, G. L.; Yang, L. M. Prognostication of two-dimensional transition-metal atoms embedded rectangular tetrafluorotetracyanoquinodimethane single-atom catalysts for high-efficiency electrochemical nitrogen reduction. J. Colloid Interface Sci. 2022, 621, 24–32.
Wang, X. L.; Yang, L. M. Unveiling the underlying mechanism of nitrogen fixation by a new class of electrocatalysts two-dimensional TM@g-C4N3 monosheets. Appl. Surf. Sci. 2022, 576, 151839.
Wang, X. L.; Yang, L. M. Efficient modulation of the catalytic performance of electrocatalytic nitrogen reduction with transition metals anchored on N/O-codoped graphene by coordination engineering. J. Mater. Chem. A 2022, 10, 1481–1496.
Zhao, M. R.; Song, B. Y.; Yang, L. M. Two-dimensional single-atom catalyst TM3(HAB)2 monolayers for electrocatalytic dinitrogen reduction using hierarchical high-throughput screening. ACS Appl. Mater. Interfaces 2021, 13, 26109–26122.
Wang, Z. X.; Zhao, J. X.; Wang, J. Y.; Cabrera, C. R.; Chen, Z. F. A Co-N4 moiety embedded into graphene as an efficient single-atom-catalyst for NO electrochemical reduction: A computational study. J. Mater. Chem. A 2018, 6, 7547–7556.
Algara-Siller, G.; Severin, N.; Chong, S. Y.; Björkman, T.; Palgrave, R. G.; Laybourn, A.; Antonietti, M.; Khimyak, Y. Z.; Krasheninnikov, A. V.; Rabe, J. P. et al. Triazine-based graphitic carbon nitride: A two-dimensional semiconductor. Angew. Chem., Int. Ed. 2014, 53, 7450–7455.
Zhu, J. J.; Xiao, P.; Li, H. L.; Carabineiro, S. A. C. Graphitic carbon nitride: Synthesis, properties, and applications in catalysis. ACS Appl. Mater. Interfaces 2014, 6, 16449–16465.
Wu, Q.; Wei, W.; Lv, X. S.; Wang, Y. Y.; Huang, B. B.; Dai, Y. Cu@g-C3N4: An efficient single-atom electrocatalyst for NO electrochemical reduction with suppressed hydrogen evolution. J. Phys. Chem. C 2019, 123, 31043–31049.
Niu, H.; Zhang, Z. F.; Wang, X. T.; Wan, X. H.; Kuai, C. G.; Guo, Y. Z. A feasible strategy for identifying single-atom catalysts toward electrochemical NO-to-NH3 conversion. Small 2021, 17, 2102396.
Xiao, J. P.; Pan, X. L.; Guo, S. J.; Ren, P. J.; Bao, X. H. Toward fundamentals of confined catalysis in carbon nanotubes. J. Am. Chem. Soc. 2015, 137, 477–482.
Zhao, H. Y.; Zhang, C. X.; Li, H.; Fang, J. One-dimensional nanomaterial supported metal single-atom electrocatalysts: Synthesis, characterization, and applications. Nano Sel. 2021, 2, 2072–2111.
Zhao, R. Q.; Luo, Y.; Jiang, F.; Dai, Y. X.; Ma, Z. Y.; Zhong, J. W.; Wu, P.; Zhou, T.; Huang, Y. C. Ultrahigh-stability SnOX (X = S, Se) nanotubes with a built-in electric field as a highly promising platform for sensing NH3, NO and NO2: A theoretical investigation. J. Mater. Chem. A 2022, 10, 7948–7959.
Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.
Hafner, J. Ab-initio simulations of materials using VASP: Density-functional theory and beyond. J. Comput. Chem. 2008, 29, 2044–2078.
Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.
Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.
Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.; Pederson, M. R.; Singh, D. J.; Fiolhais, C. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 1992, 46, 6671–6687.
Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104.
Monkhorst, H. J.; Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192.
Shuichi, N. Constant temperature molecular dynamics methods. Prog. Theor. Phys. Suppl. 1991, 103, 1–46.
Evans, D. J.; Holian, B. L. The nose-hoover thermostat. J. Chem. Phys. 1985, 83, 4069–4074.
Henkelman, G.; Arnaldsson, A.; Jónsson, H. A fast and robust algorithm for Bader decomposition of charge density. Comput. Mater. Sci. 2006, 36, 354–360.
Maintz, S.; Deringer, V. L.; Tchougréeff, A. L.; Dronskowski, R. LOBSTER: A tool to extract chemical bonding from plane-wave based DFT. J. Comput. Chem. 2016, 37, 1030–1035.
Nørskov, J. K.; Rossmeisl, J.; Logadottir, A.; Lindqvist, L.; Kitchin, J. R.; Bligaard, T.; Jónsson, H. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 2004, 108, 17886–17892.
Hu, X.; Chen, S. Y.; Chen, L. T.; Tian, Y.; Yao, S.; Lu, Z. Y.; Zhang, X.; Zhou, Z. What is the real origin of the activity of Fe-N-C electrocatalysts in the O2 reduction reaction. Critical roles of coordinating pyrrolic N and axially adsorbing species. J. Am. Chem. Soc. 2022, 144, 18144–18152.
Chun, H. J.; Apaja, V.; Clayborne, A.; Honkala, K.; Greeley, J. Atomistic insights into nitrogen-cycle electrochemistry: A combined DFT and kinetic Monte Carlo analysis of NO electrochemical reduction on Pt (100). ACS Catal. 2017, 7, 3869–3882.
Wu, Q.; Wang, H.; Shen, S. Y.; Huang, B. B.; Dai, Y.; Ma, Y. D. Efficient nitric oxide reduction to ammonia on a metal-free electrocatalyst. J. Mater. Chem. A 2021, 9, 5434–5441.
Tursun, M.; Wu, C. Single transition metal atoms anchored on defective MoS2 monolayers for the electrocatalytic reduction of nitric oxide into ammonia and hydroxylamine. Inorg. Chem. 2022, 61, 17448–17458.
Wang, Y. Y.; Zhang, D. J.; Yu, Z. Y.; Liu, C. B. Mechanism of N2O formation during NO reduction on the Au (111) surface. J. Phys. Chem. C 2010, 114, 2711–2716.
Chun, H. J.; Zeng, Z. H.; Greeley, J. DFT insights into NO electrochemical reduction: A case study of Pt (211) and Cu (211) surfaces. ACS Catal. 2022, 12, 1394–1402.
Chen, Y.; Liu, Y. J.; Wang, H. X.; Zhao, J. X.; Cai, Q. H.; Wang, X. Z.; Ding, Y. H. Silicon-doped graphene: An effective and metal-free catalyst for NO reduction to N2O. ACS Appl. Mater. Interfaces 2013, 5, 5994–6000.
Esrafili, M. D.; Asadollahi, S.; Heydari, S. A DFT study on NO reduction to N2O using Al- and P-doped hexagonal boron nitride nanosheets. J. Mol. Graph. Model. 2019, 89, 41–49.
Liang, J.; Liu, P. Y.; Li, Q. Y.; Li, T. S.; Yue, L. C.; Luo, Y. S.; Liu, Q.; Li, N.; Tang, B.; Alshehri, A. A. et al. Amorphous boron carbide on titanium dioxide nanobelt arrays for high-efficiency electrocatalytic NO reduction to NH3. Angew. Chem., Int. Ed. 2022, 61, e202202087.