AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Low-frequency blue energy harvesting for sustainable and active anticorrosion

Miaomiao Cui1,§Yawei Feng1,§Hao Wu1,3Yuankai Jin1Wanbo Li1,4Zuankai Wang2( )
Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, China
Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hong Kong, China
School of Physics and Optoelectronics, South China University of Technology, Guangzhou 510640, China
Interdisciplinary Research Center for Engineering Science, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

§ Miaomiao Cui and Yawei Feng contributed equally to this work.

Show Author Information

Graphical Abstract

We developed a blue energy-powered cathodic protection strategy by harvesting the low-frequency (< 1.5 Hz) ocean wave energy with an ultrahigh volumetric current density of 5–20 times higher than the reported technologies. The proposed strategy can be easily established on ships, buoys, and other offshore platforms to resist materials corrosion, exhibiting comparable performance to the conventional cathodic protection method.

Abstract

Engineering materials serving in marine surroundings are inevitably corroded. The corrosive marine conditions can also be utilized to harvest kinetic ocean wave energy to solve this problem. Leveraging water–solid triboelectrification to harvest low-frequency wave energy for active anticorrosion is promising. Existing techniques are efficient in harnessing environmental energy with frequencies higher than 3 Hz, whereas the dominated ocean waves with optimal wave spectral density fluctuate from 0.45 to 1.5 Hz. Herein, we proposed a highly efficient and sustainable blue energy-powered cathodic protection (BECP) strategy by fusing water–solid triboelectric nanogenerators and cathodic protection technology. Leveraging the highly efficient triboelectrification between the moving water and hydrophobic fluorinated ethylene propylene tube, we developed the built-in power module, enabling the harvest of ocean wave energy lower than 1.5 Hz. The generated volumetric current density is 28.9 mA·m−3, 5–20 times higher than the values of the reported devices. Moreover, the proposed BECP performs comparably to conventional cathodic protection in corrosion inhibition. Significantly, the proposed approach can be easily applied to ships, buoys, and other offshore platforms to simultaneously realize blue energy harvesting and engineering material protection, providing an alternative to traditional active protection technology.

Electronic Supplementary Material

Video
12274_2023_5623_MOESM2_ESM.mp4
12274_2023_5623_MOESM3_ESM.mp4
12274_2023_5623_MOESM4_ESM.mp4
12274_2023_5623_MOESM5_ESM.mp4
12274_2023_5623_MOESM6_ESM.mp4
12274_2023_5623_MOESM7_ESM.mp4
12274_2023_5623_MOESM8_ESM.mp4
12274_2023_5623_MOESM9_ESM.mp4
Download File(s)
12274_2023_5623_MOESM1_ESM.pdf (587.8 KB)

References

[1]
Levitus, S. Boyer, T. P. World Ocean Atlas 1994, Vol. 4, Temperature, NOAA; U. S. Department of Commerce: Washington, 1994.
[2]

Sabel, C. F.; Victor, D. G. Governing global problems under uncertainty: Making bottom–up climate policy work. Clim. Change 2017, 144, 15–27.

[3]

Xia, D. H.; Deng, C. M.; Macdonald, D.; Jamali, S.; Mills, D.; Luo, J. L.; Strebl, M. G.; Amiri, M.; Jin, W. X.; Song, S. Z. et al. Electrochemical measurements used for assessment of corrosion and protection of metallic materials in the field: A critical review. J. Mater. Sci. Technol. 2022, 112, 151–183.

[4]

Li, H. G.; Zhang, Y. B.; Li, C. H.; Zhou, Z. M.; Nie, X. L.; Chen, Y.; Cao, H. J.; Liu, B.; Zhang, N. Q.; Said, Z. et al. Cutting fluid corrosion inhibitors from inorganic to organic: Progress and applications. Korean J. Chem. Eng. 2022, 39, 1107–1134.

[5]

Edalati, K.; Bachmaier, A.; Beloshenko, V. A.; Beygelzimer, Y.; Blank, V. D.; Botta, W. J.; Bryła, K.; Čížek, J.; Divinski, S.; Enikeev, N. A. et al. Nanomaterials by severe plastic deformation: Review of historical developments and recent advances. Mater. Res. Lett. 2022, 10, 163–256.

[6]

Cao, Y. H.; Zheng, D. J.; Zhang, F.; Pan, J. S.; Lin, C. J. Layered double hydroxide (LDH) for multi-functionalized corrosion protection of metals: A review. J. Mater. Sci. Technol. 2022, 102, 232–263.

[7]

Berdimurodov, E.; Verma, D. K.; Kholikov, A.; Akbarov, K.; Guo, L. The recent development of carbon dots as powerful green corrosion inhibitors: A prospective review. J. Mol. Liq. 2022, 349, 118124.

[8]

Wang, Y. C.; Liu, B. Y.; Zhao, X. A.; Zhang, X. H.; Miao, Y. C.; Yang, N.; Yang, B.; Zhang, L. Q.; Kuang, W. J.; Li, J. et al. Turning a native or corroded Mg alloy surface into an anti-corrosion coating in excited CO2. Nat. Commun. 2018, 9, 4058.

[9]

Cui, M. M.; Wang, P. Y.; Wang, Z. K.; Wang, B. Mangrove inspired anti-corrosion coatings. Coatings 2019, 9, 725.

[10]

Cui, M. M.; Wang, Z. K.; Wang, B. Survival strategies of mangrove (Ceriops tagal (perr.) C. B. Rob) and the inspired corrosion inhibitor. Front. Mater. 2022, 9, 879525.

[11]

Raja, P. B.; Sethuraman, M. G. Natural products as corrosion inhibitor for metals in corrosive media—A review. Mater. Lett. 2008, 62, 113–116.

[12]

Cui, M. M.; Njoku, D. I.; Li, B. W.; Yang, L. H.; Wang, Z. K.; Hou, B. R.; Li, Y. Corrosion protection of aluminium alloy 2024 through an epoxy coating embedded with smart microcapsules: The responses of smart microcapsules to corrosive entities. Corros. Commun. 2021, 1, 1–9.

[13]

Njoku, D. I.; Cui, M. M.; Xiao, H. G.; Shang, B. H.; Li, Y. Understanding the anticorrosive protective mechanisms of modified epoxy coatings with improved barrier, active and self-healing functionalities: EIS and spectroscopic techniques. Sci. Rep. 2017, 7, 15597.

[14]

Cao, X.; Jie, Y.; Wang, N.; Wang, Z. L. Triboelectric nanogenerators driven self-powered electrochemical processes for energy and environmental science. Adv. Energy Mater. 2016, 6, 1600665.

[15]

Guo, W. X.; Li, X. Y.; Chen, M. X.; Xu, L.; Dong, L.; Cao, X.; Tang, W.; Zhu, J.; Lin, C. J.; Pan, C. F. et al. Electrochemical cathodic protection powered by triboelectric nanogenerator. Adv. Funct. Mater. 2014, 24, 6691–6699.

[16]

Zhu, P. H.; Ullah, Z.; Zheng, S. R.; Yang, Z. R.; Yu, S. W.; Zhu, S. P.; Liu, L. W.; He, A. H.; Wang, C. G.; Li, Q. Ultrahigh current output from triboelectric nanogenerators based on UIO-66 materials for electrochemical cathodic protection. Nano Energy 2023, 108, 108195.

[17]

Xu, C. G.; Liu, Y.; Liu, Y. P.; Zheng, Y. B.; Feng, Y. G.; Wang, B. Q.; Kong, X.; Zhang, X. L.; Wang, D. A. New inorganic coating-based triboelectric nanogenerators with anti-wear and self-healing properties for efficient wave energy harvesting. Appl. Mater. Today 2020, 20, 100645.

[18]

Zhang, X. L.; Zheng, Y. B.; Wang, D. A.; Rahman, Z. U.; Zhou, F. Liquid–solid contact triboelectrification and its use in self-powered nanosensor for detecting organics in water. Nano Energy 2016, 30, 321–329.

[19]

Sun, W. X.; Zheng, Y. B.; Li, T. H.; Feng, M.; Cui, S. W.; Liu, Y. P.; Chen, S. G.; Wang, D. A. Liquid–solid triboelectric nanogenerators array and its applications for wave energy harvesting and self-powered cathodic protection. Energy 2021, 217, 119388.

[20]

Jeon, S. B.; Kim, D.; Seol, M. L.; Park, S. J.; Choi, Y. K. 3-Dimensional broadband energy harvester based on internal hydrodynamic oscillation with a package structure. Nano Energy 2015, 17, 82–90.

[21]

Cui, S. W.; Zheng, Y. B.; Liang, J.; Wang, D. A. Triboelectrification based on double-layered polyaniline nanofibers for self-powered cathodic protection driven by wind. Nano Res. 2018, 11, 1873–1882.

[22]

Cui, S. W.; Wang, J. P.; Mi, L. W.; Chen, K. Y.; Ai, W. Y.; Zhai, L. P.; Guan, X. Y.; Zheng, Y. B.; Wang, D. A. A new synergetic system based on triboelectric nanogenerator and corrosion inhibitor for enhanced anticorrosion performance. Nano Energy 2022, 91, 106696.

[23]

Cui, S. W.; Zheng, Y. B.; Liang, J.; Wang, D. A. Conducting polymer PPy nanowire-based triboelectric nanogenerator and its application for self-powered electrochemical cathodic protection. Chem. Sci. 2016, 7, 6477–6483.

[24]

Feng, Y. G.; Zheng, Y. B.; Rahman, Z. U.; Wang, D. A.; Zhou, F.; Liu, W. M. Paper-based triboelectric nanogenerators and their application in self-powered anticorrosion and antifouling. J. Mater. Chem. A 2016, 4, 18022–18030.

[25]

Liu, Y. P.; Sun, W. X.; Li, T. H.; Wang, D. A. Hydrophobic MAO/FSG coating based TENG for self-healable energy harvesting and self-powered cathodic protection. Sci. China:Technol. Sci. 2022, 65, 726–734.

[26]

Sun, W. X.; Wang, N. N.; Li, J. R.; Xu, S. W.; Song, L.; Liu, Y. P.; Wang, D. A. Humidity-resistant triboelectric nanogenerator and its applications in wind energy harvesting and self-powered cathodic protection. Electrochim. Acta 2021, 391, 138994.

[27]

Han, J. J.; Liu, Y.; Feng, Y. W.; Jiang, T.; Wang, Z. L. Achieving a large driving force on triboelectric nanogenerator by wave-driven linkage mechanism for harvesting blue energy toward marine environment monitoring. Adv. Energy Mater. 2023, 13, 2203219.

[28]

Liu, Y. P.; Sun, G. Y.; Liu, Y.; Sun, W. X.; Wang, D. A. Hydrophobic organic coating based water–solid TENG for water-flow energy collection and self-powered cathodic protection. Front. Mater. Sci. 2021, 15, 601–610.

[29]

Zhong, Y. M.; Guo, Y. C.; Wei, X. X.; Rui, P. S.; Du, H. J.; Wang, P. H. Multi-cylinder-based hybridized electromagnetic-triboelectric nanogenerator harvesting multiple fluid energy for self-powered pipeline leakage monitoring and anticorrosion protection. Nano Energy 2021, 89, 106467.

[30]

Feng, Y. W.; Han, J. J.; Xu, M. J.; Liang, X.; Jiang, T.; Li, H. X.; Wang, Z. L. Blue energy for green hydrogen fuel: A self-powered electrochemical conversion system driven by triboelectric nanogenerators. Adv. Energy Mater. 2022, 12, 2103143.

[31]

Cao, B.; Wang, P. H.; Rui, P. S.; Wei, X. X.; Wang, Z. X.; Yang, Y. W.; Tu, X. B.; Chen, C.; Wang, Z. Z.; Yang, Z. Q. et al. Broadband and output-controllable triboelectric nanogenerator enabled by coupling swing-rotation switching mechanism with potential energy storage/release strategy for low-frequency mechanical energy harvesting. Adv. Energy Mater. 2022, 12, 2202627.

[32]

Zhang, X. M.; Yang, Q. X.; Ji, P. Y.; Wu, Z. F.; Li, Q. Y.; Yang, H. K.; Li, X. C.; Zheng, G. C.; Xi, Y.; Wang, Z. L. Modeling of liquid–solid hydrodynamic water wave energy harvesting system based on triboelectric nanogenerator. Nano Energy 2022, 99, 107362.

[33]

Cheng, P.; Guo, H. Y.; Wen, Z.; Zhang, C. L.; Yin, X.; Li, X. Y.; Liu, D.; Song, W. X.; Sun, X. H.; Wang, J. et al. Largely enhanced triboelectric nanogenerator for efficient harvesting of water wave energy by soft contacted structure. Nano Energy 2019, 57, 432–439.

[34]

Wang, H. Y.; Zhu, Q. Y.; Ding, Z. Y.; Li, Z. L.; Zheng, H. W.; Fu, J. J.; Diao, C. L.; Zhang, X. N.; Tian, J. J.; Zi, Y. L. A fully-packaged ship-shaped hybrid nanogenerator for blue energy harvesting toward seawater self-desalination and self-powered positioning. Nano Energy 2019, 57, 616–624.

[35]

Feng, Y. W.; Jiang, T.; Liang, X.; An, J.; Wang, Z. L. Cylindrical triboelectric nanogenerator based on swing structure for efficient harvesting of ultra-low-frequency water wave energy. Appl. Phys. Rev. 2020, 7, 021401.

[36]

Zhu, H. R.; Tang, W.; Gao, C. Z.; Han, Y.; Li, T.; Cao, X.; Wang, Z. L. Self-powered metal surface anti-corrosion protection using energy harvested from rain drops and wind. Nano Energy 2015, 14, 193–200.

[37]

Wu, H.; Mendel, N.; Van Den Ende, D.; Zhou, G. F.; Mugele, F. Energy harvesting from drops impacting onto charged surfaces. Phys. Rev. Lett. 2020, 125, 078301.

[38]

Wang, L. L.; Song, Y. X.; Xu, W. H.; Li, W. B.; Jin, Y. K.; Gao, S. W.; Yang, S. Y.; Wu, C. Y.; Wang, S.; Wang, Z. K. Harvesting energy from high-frequency impinging water droplets by a droplet-based electricity generator. EcoMat 2021, 3, e12116.

[39]

Wei, X. L.; Zhao, Z. H.; Zhang, C. G.; Yuan, W.; Wu, Z. Y.; Wang, J.; Wang, Z. L. All-weather droplet-based triboelectric nanogenerator for wave energy harvesting. ACS Nano 2021, 15, 13200–13208.

[40]

Wang, Y.; Gao, S. W.; Xu, W. H.; Wang, Z. K. Nanogenerators with superwetting surfaces for harvesting water/liquid energy. Adv. Funct. Mater. 2020, 30, 1908252.

[41]

Zhang, N.; Zhang, H. M.; Xu, W. H.; Gu, H. J.; Ye, S. M.; Zheng, H. X.; Song, Y. X.; Wang, Z. K.; Zhou, X. F. A droplet-based electricity generator with ultrahigh instantaneous output and short charging time. Droplet 2022, 1, 56–64.

[42]

Jin, Y. K.; Wu, C. Y.; Sun, P. C.; Wang, M. M.; Cui, M. M.; Zhang, C.; Wang, Z. K. Electrification of water: From basics to applications. Droplet 2022, 1, 92–109.

[43]
Toffoli, A.; Bitner-Gregersen, E. M. Types of ocean surface waves, wave classification. In Encyclopedia of Maritime and Offshore Engineering. Carlton, J.; Jukes, P.; Choo, Y. S., Eds.; John Wiley & Sons: New York, 2017; pp 1–8.
[44]

Lee, U. J.; Jeong, W. M.; Cho, H. Y. Estimation and analysis of JONSWAP spectrum parameter using observed data around Korean coast. J. Mar. Sci. Eng. 2022, 10, 578.

[45]

Jiang, D. Y.; Xu, M. Y.; Dong, M.; Guo, F.; Liu, X. H.; Chen, G. J.; Wang, Z. L. Water–solid triboelectric nanogenerators: An alternative means for harvesting hydropower. Renewable Sustainable Energy Rev. 2019, 115, 109366.

[46]

Xu, W. H.; Zheng, H. X.; Liu, Y.; Zhou, X. F.; Zhang, C.; Song, Y. X.; Deng, X.; Leung, M.; Yang, Z. B.; Xu, R. X. et al. A droplet-based electricity generator with high instantaneous power density. Nature 2020, 578, 392–396.

[47]

Xu, W. H.; Song, Y. X.; Xu, R. X.; Wang, Z. K. Electrohydrodynamic and hydroelectric effects at the water–solid interface: From fundamentals to applications. Adv. Mater. Interfaces 2021, 8, 2000670.

[48]

Basset, P.; Beeby, S. P.; Bowen, C.; Chew, Z. J.; Delbani, A.; Dharmasena, R. D. I. G.; Dudem, B.; Fan, F. R.; Galayko, D.; Guo, H. Y. et al. Roadmap on nanogenerators and piezotronics. APL Mater. 2022, 10, 109201.

[49]
Zheng, H. X.; Wu, H.; Yi, Z. R.; Song, Y. X.; Xu, W. H.; Yan, X. T.; Zhou, X. F.; Wang, S.; Wang, Z. K. Remote-controlled droplet chains-based electricity generators. Adv. Energy Mater., in press, https://doi/org/10.1002/aenm.202203825.
[50]

Zhao, X. J.; Kuang, S. Y.; Wang, Z. L.; Zhu, G. Highly adaptive solid–liquid interfacing triboelectric nanogenerator for harvesting diverse water wave energy. ACS Nano 2018, 12, 4280–4285.

[51]

Zhang, N.; Gu, H. J.; Zheng, H. X.; Ye, S. M.; Kang, L.; Huang, C.; Lu, K. Y.; Xu, W. H.; Miao, Q. Q.; Wang, Z. K. et al. Boosting the output performance of volume effect electricity generator (VEEG) with water column. Nano Energy 2020, 73, 104748.

[52]
Von Baeckmann, W.; Schwenk, W.; Prinz, W. Handbook of Cathodic Corrosion Protection; Gulf Professional Publishing: Houston, 1997.
Nano Research
Pages 11871-11877
Cite this article:
Cui M, Feng Y, Wu H, et al. Low-frequency blue energy harvesting for sustainable and active anticorrosion. Nano Research, 2023, 16(9): 11871-11877. https://doi.org/10.1007/s12274-023-5623-0
Topics:
Part of a topical collection:

1307

Views

6

Crossref

6

Web of Science

6

Scopus

0

CSCD

Altmetrics

Received: 31 January 2023
Revised: 21 February 2023
Accepted: 27 February 2023
Published: 26 March 2023
© Tsinghua University Press 2023
Return