AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Copper diffusion related phase change and voltage decay in CuS cathode

Jian Zou1Zhenrui Wu2Ruilin Tang1Zhenzhen Ren1Xiaobin Niu1Liping Wang1( )
School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China
School of Engineering, Faculty of Applied Science, The University of British Columbia, Kelowna V1V 1V7, Canada
Show Author Information

Graphical Abstract

Phase changes of CuS are driven by topotactic-reaction-related copper diffusion and rearrangement.

Abstract

Copper sulfide (CuS) is a promising cathode for lithium-ion batteries (LIBs) due to its impeccable theoretical energy density (~ 1015 Wh·kg−1 and 4743 Wh·L−1). However, it suffers from voltage decay leaded energy density loss and low energy efficiency, which hinders its application. In this work, with combined ex-situ/in-situ X-ray diffraction (XRD) and electrochemical analysis, we explore detailed degradation mechanisms. For the voltage decay, it is attributed to a spontaneous reaction between CuS cathode and copper current collector (Cu CC). This reaction leads to energy density loss and active materials degradation (CuS → Cu1.81S). As for energy efficiency, CuS undergoes a series of phase transformations. The main phase transition processes are CuS → α-LiCuS → Li2−xCuxS + Cu → Li2S + Cu for discharge; Li2S + Cu → Li2−xCuxS → β-LiCuS → CuS for charge. Here, α-LiCuS, β-LiCuS, and Li2−xCuxS are newly identified phases. These phase changes are driven by topotactic-reaction-related copper diffusion and rearrangement. This work demonstrates the significance of transition-metal diffusion in the intermediates formation and phase change in conversion-type materials.

Electronic Supplementary Material

Download File(s)
5627_ESM.pdf (417.1 KB)

References

[1]

Wu, F. X.; Yushin, G. Conversion cathodes for rechargeable lithium and lithium-ion batteries. Energy Environ. Sci. 2017, 10, 435–459.

[2]

Zubi, G.; Dufo-López, R.; Carvalho, M.; Pasaoglu, G. The lithium-ion battery: State of the art and future perspectives. Renew. Sustainable Energy Rev. 2018, 89, 292–308.

[3]
Wang, S. Y.; Wang, Z. W.; Chen, F. Z.; Peng, B.; Xu, J.; Li, J. Z.; Lv, Y. H.; Kang, Q.; Xia, A. L.; Ma, L. B. Electrocatalysts in lithium-sulfur batteries. Nano Res. , in press,DOI: 10.1007/s12274-022-5215-4.
[4]

Zhao, S. Q.; Guo, Z. Q.; Yan, K.; Wan, S. W.; He, F. R.; Sun, B.; Wang, G. X. Towards high-energy-density lithium-ion batteries: Strategies for developing high-capacity lithium-rich cathode materials. Energy Storage Mater. 2021, 34, 716–734.

[5]

Wang, Y. Q.; An, N.; Wen, L.; Wang, L.; Jiang, X. T.; Hou, F.; Yin, Y. X.; Liang, J. Recent progress on the recycling technology of Li-ion batteries. J. Energy Chem. 2021, 55, 391–419.

[6]

Cheng, Y.; Sun, Y.; Chu, C. T.; Chang, L. M.; Wang, Z. M.; Zhang, D. Y.; Liu, W. Q.; Zhuang, Z. C.; Wang, L. M. Stabilizing effects of atomic Ti doping on high-voltage high-nickel layered oxide cathode for lithium-ion rechargeable batteries. Nano Res. 2022, 15, 4091–4099.

[7]

Wang, H. M.; Chen, S. S.; Fu, C. L.; Ding, Y.; Liu, G. R.; Cao, Y. L.; Chen, Z. X. Recent advances in conversion-type electrode materials for post lithium-ion batteries. ACS Mater. Lett. 2021, 3, 956–977.

[8]

Cabana, J.; Monconduit, L.; Larcher, D.; Palacín, M. R. Beyond intercalation-based Li-ion batteries: The state of the art and challenges of electrode materials reacting through conversion reactions. Adv. Mater. 2010, 22, E170–E192.

[9]

Wang, L. P.; Wu, Z. R.; Zou, J.; Gao, P.; Niu, X. B.; Li, H.; Chen, L. Q. Li-free cathode materials for high energy density lithium batteries. Joule 2019, 3, 2086–2102.

[10]

Li, L. S.; Jacobs, R.; Gao, P.; Gan, L. Y.; Wang, F.; Morgan, D.; Jin, S. Origins of large voltage hysteresis in high-energy-density metal fluoride lithium-ion battery conversion electrodes. J. Am. Chem. Soc. 2016, 138, 2838–2848.

[11]

Wang, F.; Robert, R.; Chernova, N. A.; Pereira, N.; Omenya, F.; Badway, F.; Hua, X.; Ruotolo, M.; Zhang, R. G.; Wu, L. J. et al. Conversion reaction mechanisms in lithium ion batteries: Study of the binary metal fluoride electrodes. J. Am. Chem. Soc. 2011, 133, 18828–18836.

[12]

Jiang, J.; Ji, H. N.; Chen, P. Y.; Ouyang, C. Y.; Niu, X. B.; Li, H.; Wang, L. P. The influence of electrolyte concentration and solvent on operational voltage of Li/CFx primary batteries elucidated by Nernst Equation. J. Power Sources 2022, 527, 231193.

[13]

Zou, J.; Yuan, K. G.; Zhao, J.; Wang, B. J.; Chen, S. Y.; Huang, J. Y.; Li, H.; Niu, X. B.; Wang, L. P. Delithiation-driven topotactic reaction endows superior cycling performances for high-energy-density FeSx (1 ≤ x ≤ 1.14) cathodes. Energy Storage Mater. 2021, 43, 579–584.

[14]

Jiang, K.; Chen, Z. H.; Meng, X. B. CuS and Cu2S as cathode materials for lithium batteries: A review. ChemElectroChem 2019, 6, 2825–2840.

[15]

Bonino, F.; Lazzari, M.; Rivolta, B.; Scrosati, B. Electrochemical behavior of solid cathode materials in organic electrolyte lithium batteries: Copper sulfides. J. Electrochem. Soc. 1984, 131, 1498–1502.

[16]

Exnar, I.; Hep, J. Copper(II) sulfide as cathode active material in secondary lithium batteries. J. Power Sources 1993, 44, 701–705.

[17]

Mazor, H.; Golodnitsky, D.; Burstein, L.; Peled, E. High power copper sulfide cathodes for thin-film microbatteries. Electrochem. Solid-State Lett. 2009, 12, A232.

[18]

Wang, X. X.; Wang, Y. H.; Li, X.; Liu, B.; Zhao, J. B. A facile synthesis of copper sulfides composite with lithium-storage properties. J. Power Sources 2015, 281, 185–191.

[19]

Zhang, Z.; An, Y. L.; Feng, J. K.; Ci, L.; Duan, B. H.; Huang, W.; Dong, C. L.; Xiong, S. L. Carbon coated copper sulfides nanosheets synthesized via directly sulfurizing metal–organic frameworks for lithium batteries. Mater. Lett. 2016, 181, 340–344.

[20]

Liu, H. Q.; He, Y. N.; Zhang, H.; Cao, K. Z.; Wang, S. D.; Jiang, Y.; Jing, Q. S.; Jiao, L. F. Lowering the voltage-hysteresis of CuS anode for Li-ion batteries via constructing heterostructure. Chem. Eng. J. 2021, 425, 130548.

[21]

Yamakawa, N.; Jiang, M.; Grey, C. P. Investigation of the conversion reaction mechanisms for binary copper(II) compounds by solid-tate NMR spectroscopy and X-ray diffraction. Chem. Mater. 2009, 21, 3162–3176.

[22]

He, K.; Yao, Z. P.; Hwang, S.; Li, N.; Sun, K.; Gan, H.; Du, Y. P.; Zhang, H.; Wolverton, C.; Su, D. Kinetically-driven phase transformation during lithiation in copper sulfide nanoflakes. Nano Lett. 2017, 17, 5726–5733.

[23]

Débart, A.; Dupont, L.; Patrice, R.; Tarascon, J. M. Reactivity of transition metal (Co, Ni, Cu) sulphides versus lithium: The intriguing case of the copper sulphide. Solid State Sci. 2006, 8, 640–651.

[24]

Zhou, G. M.; Tian, H. Z.; Jin, Y.; Tao, X. Y.; Liu, B. F.; Zhang, R. F.; Seh, Z. W.; Zhuo, D.; Liu, Y. Y.; Sun, J. et al. Catalytic oxidation of Li2S on the surface of metal sulfides for Li-S batteries. Proc. Natl. Acad. Sci. USA 2017, 114, 840–845.

[25]

Fu, Y. Z.; Manthiram, A. Electrochemical properties of Cu2S with ether-based electrolyte in Li-ion batteries. Electrochim. Acta 2013, 109, 716–719.

[26]

Li, X.; He, X. Y.; Shi, C. M.; Liu, B.; Zhang, Y. Y.; Wu, S. Q.; Zhu, Z. Z.; Zhao, J. B. Synthesis of one-dimensional copper sulfide nanorods as high-performance anode in lithium ion batteries. ChemSusChem 2014, 7, 3328–3333.

[27]

Wang, Y. R.; Zhang, X. W.; Chen, P.; Liao, H. T.; Cheng, S. Q. In situ preparation of CuS cathode with unique stability and high rate performance for lithium ion batteries. Electrochim. Acta 2012, 80, 264–268.

[28]

Wang, A. P.; Kadam, S.; Li, H.; Shi, S. Q.; Qi, Y. Review on modeling of the anode solid electrolyte interphase (SEI) for lithium-ion batteries. npj Comput. Mater. 2018, 4, 15.

[29]

Frankenberger, M.; Trunk, M.; Seidlmayer, S.; Dinter, A.; Dittloff, J.; Werner, L.; Gernhäuser, R.; Revay, Z.; Märkisch, B.; Gilles, R. et al. SEI growth impacts of lamination, formation and cycling in lithium ion batteries. Batteries 2020, 6, 21.

[30]

Maier, J. Thermodynamics of Electrochemical Lithium Storage. Angew. Chem., Int. Ed. 2013, 52, 4998–5026.

[31]
Chase, M. W. NIST-JANAF Thermochemical Tables 4th ed; Springer Verlag, 1998.
[32]
Stølen, S.; Grønvold, F. Thermodynamic properties of the CuS-Cu2S system. In Thermochemistry of Alloys. Brodowsky, H.; Schaller, H. J. , Eds.; Springer: Dordrecht, 1989; pp 213–220.
[33]

Wang, Y. C.; Chao, D. L.; Wang, Z. Z.; Ni, J. F.; Li, L. An energetic CuS-Cu battery system based on CuS nanosheet arrays. ACS Nano 2021, 15, 5420–5427.

[34]

Singh, R.; Witte, R.; Mu, X. K.; Brezesinski, T.; Hahn, H.; Kruk, R.; Breitung, B. Reversible control of magnetism: On the conversion of hydrated FeF3 with Li to Fe and LiF. J. Mater. Chem. A 2019, 7, 24005–24011.

[35]

Hua, X.; Robert, R.; Du, L. S.; Wiaderek, K. M.; Leskes, M.; Chapman, K. W.; Chupas, P. J.; Grey, C. P. Comprehensive study of the CuF2 conversion reaction mechanism in a lithium ion battery. J. Phys. Chem. C 2014, 118, 15169–15184.

[36]

Suslov, E. A.; Bushkova, O. V.; Sherstobitova, E. A.; Reznitskikh, O. G.; Titov, A. N. Lithium intercalation into TiS2 cathode material: Phase equilibria in a Li-TiS2 system. Ionics 2016, 22, 503–514.

[37]

Beleanu, A.; Kiss, J.; Baenitz, M.; Majumder, M.; Senyshyn, A.; Kreiner, G.; Felser, C. LiCuS, an intermediate phase in the electrochemical conversion reaction of CuS with Li: A potential environment-friendly battery and solar cell material. Solid State Sci. 2016, 55, 83–87.

[38]

Soliman, S. Theoretical investigation of Cu-containing materials with different valence structure types: BaCu2S2, Li2CuSb, and LiCuS. J. Phys. Chem. Solids 2014, 75, 927–930.

[39]

McDowell, M. T.; Lu, Z. D.; Koski, K. J.; Yu, J. H.; Zheng, G. Y.; Cui, Y. In situ observation of divergent phase transformations in individual sulfide nanocrystals. Nano Lett. 2015, 15, 1264–1271.

[40]

Morcrette, M.; Rozier, P.; Dupont, L.; Mugnier, E.; Sannier, L.; Galy, J.; Tarascon, J. M. A reversible copper extrusion-insertion electrode for rechargeable Li batteries. Nat. Mater. 2003, 2, 755–761.

[41]

Pauporté, T.; Vedel, J. Temperature effects on copper diffusion in natural chalcocite. Solid State Ionics 1999, 116, 311–320.

[42]

Berthelot, R.; Carlier, D.; Delmas, C. Electrochemical investigation of the P2-NaxCoO2 phase diagram. Nat. Mater. 2011, 10, 74–80.

[43]

Lyu, Y.; Wu, X.; Wang, K.; Feng, Z. J.; Cheng, T.; Liu, Y.; Wang, M.; Chen, R. M.; Xu, L. M.; Zhou, J. J. et al. An overview on the advances of LiCoO2 cathodes for lithium-ion batteries. Adv. Energy Mater. 2021, 11, 2000982.

[44]

Liao, J. Y.; Han, Y.; Zhang, Z. Z.; Xu, J. Y.; Li, J. B.; Zhou, X. S. Recent progress and prospects of layered cathode materials for potassium-ion batteries. Energy Environ. Mater. 2021, 4, 178–200.

[45]

Hua, X.; Allan, P. K.; Gong, C.; Chater, P. A.; Schmidt, E. M.; Geddes, H. S.; Robertson, A. W.; Bruce, P. G.; Goodwin, A. L. Non-equilibrium metal oxides via reconversion chemistry in lithium-ion batteries. Nat. Commun. 2021, 12, 561.

[46]

Zhang, W.; Li, Y.; Wu, L. J.; Duan, Y. D.; Kisslinger, K.; Chen, C. L.; Bock, D. C.; Pan, F.; Zhu, Y. M.; Marschilok, A. C. et al. Multi-electron transfer enabled by topotactic reaction in magnetite. Nat. Commun. 2019, 10, 1972.

[47]

Karki, K.; Wu, L. J.; Ma, Y.; Armstrong, M. J.; Holmes, J. D.; Garofalini, S. H.; Zhu, Y. M.; Stach, E. A.; Wang, F. Revisiting conversion reaction mechanisms in lithium batteries: Lithiation-driven topotactic transformation in FeF2. J. Am. Chem. Soc. 2018, 140, 17915–17922.

[48]

Wang, J. L.; He, Y. S.; Yang, J. Sulfur-based composite cathode materials for high-energy rechargeable lithium batteries. Adv. Mater. 2015, 27, 569–575.

Nano Research
Pages 8497-8503
Cite this article:
Zou J, Wu Z, Tang R, et al. Copper diffusion related phase change and voltage decay in CuS cathode. Nano Research, 2023, 16(6): 8497-8503. https://doi.org/10.1007/s12274-023-5627-9
Topics:
Part of a topical collection:

736

Views

2

Crossref

2

Web of Science

2

Scopus

0

CSCD

Altmetrics

Received: 18 January 2023
Revised: 25 February 2023
Accepted: 28 February 2023
Published: 13 April 2023
© Tsinghua University Press 2023
Return