AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Ultrastable nickel single-atom catalysts with high activity and selectivity for electrocatalytic CO2 methanation

Ling-Chan Tian1Jin-Nian Hu1Yang Meng1Jin-Xia Liang1( )Chun Zhu1,2( )Jun Li2,3
School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China
Department of Chemistry and Guangdong Provincial Key Laboratory of Catalytic Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
Department of Chemistry and Engineering Research Center of Advanced Rare-Earth Materials of Ministry of Education, Tsinghua University, Beijing 100084, China
Show Author Information

Graphical Abstract

Metal–organic framework UiO-66-NH2 supported Ni single-atom catalysts efficiently catalyze the CO2-to-CH4 reduction.

Abstract

Electrochemical conversion of CO2 into valuable hydrocarbon fuel is one of the key steps in solving carbon emission and energy issue. Herein, we report a non-noble metal catalyst, nickel single-atom catalyst (SAC) of Ni1/UiO-66-NH2, with high stability and selectivity for electrochemical reduction of CO2 to CH4. Based on ab initio molecular dynamics (AIMD) simulations, the CO2 molecule is at first reduced into CO2 when stably adsorbed on a Ni single atom with the bidentate coordination mode. To evaluate its activity and selectivity for electrocatalytic reduction of CO2 to different products (HCOOH, CO, CH3OH, and CH4) on Ni1/UiO-66-NH2, we have used density functional theory (DFT) to study different reaction pathways. The results show that CH4 is generated preferentially on Ni1/UiO-66-NH2 and the calculated limiting potential is as low as −0.24 V. Moreover, the competitive hydrogen evolution reaction is unfavorable at the activation site of Ni1/UiO-66-NH2 owing to the higher limiting potential of −0.56 V. Furthermore, the change of Ni single atom valence state plays an important role in promoting CO2 reduction to CH4. This work provides a theoretical foundation for further experimental studies and practical applications of metal–organic framework (UiO-66)-based SAC electrocatalysts with high activity and selectivity for the CO2 reduction reaction.

Electronic Supplementary Material

Download File(s)
12274_2023_5640_MOESM1_ESM.pdf (1.5 MB)

References

[1]

Han, C.; Sun, Q.; Li, Z.; Dou, S. X. Thermoelectric enhancement of different kinds of metal chalcogenides. Adv. Energy Mater. 2016, 6, 1600498.

[2]

Zhang, P. F.; Wu, D.; Yang, G. P.; Wang, Y. Y. Metal–organic frameworks as heterogeneous electrocatalysts for water splitting and CO2 fixation. Cryst. Growth Des. 2021, 21, 3123–3142.

[3]

Ding, M. L.; Flaig, R. W.; Jiang, H. L.; Yaghi, O. M. Carbon capture and conversion using metal–organic frameworks and MOF-based materials. Chem. Soc. Rev. 2019, 48, 2783–2828.

[4]

Lin, S.; Diercks, C. S.; Zhang, Y. B.; Kornienko, N.; Nichols, E. M.; Zhao, Y. B.; Paris, A. R.; Kim, D.; Yang, P. D.; Yaghi, O. M. et al. Covalent organic frameworks comprising cobalt porphyrins for catalytic CO2 reduction in water. Science 2015, 349, 1208–1213.

[5]

Fu, L.; Wang, R.; Zhao, C. X.; Huo, J. R.; He, C. Z.; Kim, K. H.; Zhang, W. Construction of Cr-embedded graphyne electrocatalyst for highly selective reduction of CO2 to CH4: A DFT study. Chem. Eng. J. 2021, 414, 128857.

[6]

Tackett, B. M.; Gomez, E.; Chen, J. G. Net reduction of CO2 via its thermocatalytic and electrocatalytic transformation reactions in standard and hybrid processes. Nat. Catal. 2019, 2, 381–386.

[7]

Li, Z.; Zhang, L.; Huang, W. H.; Xu, C. Y.; Zhang, Y. W. Photothermal catalysis for selective CO2 reduction on the modified anatase TiO2 (101) surface. ACS Appl. Energy Mater. 2021, 4, 7702–7709.

[8]

Zang, D. J.; Gao, X. J.; Li, L. Y.; Wei, Y. G.; Wang, H. Q. Confined interface engineering of self-supported Cu@N-doped graphene for electrocatalytic CO2 reduction with enhanced selectivity towards ethanol. Nano Res. 2022, 15, 8872–8879.

[9]

Li, Z.; Wu, R.; Zhao, L.; Li, P. B.; Wei, X. X.; Wang, J. J.; Chen, J. S.; Zhang, T. R. Metal-support interactions in designing noble metal-based catalysts for electrochemical CO2 reduction: Recent advances and future perspectives. Nano Res. 2021, 14, 3795–3809.

[10]

Zhu, Y. T.; Cui, X. Y.; Liu, H. L.; Guo, Z. G.; Dang, Y. F.; Fan, Z. X.; Zhang, Z. C.; Hu, W. P. Tandem catalysis in electrochemical CO2 reduction reaction. Nano Res. 2021, 14, 4471–4486.

[11]

Zhang, X. L.; Zhang, Y.; Li, F. W.; Easton, C. D.; Bond, A. M.; Zhang, J. Ultra-small Cu nanoparticles embedded in N-doped carbon arrays for electrocatalytic CO2 reduction reaction in dimethylformamide. Nano Res. 2018, 11, 3678–3690.

[12]

Mou, S. Y.; Li, Y. H.; Yue, L. C.; Liang, J.; Luo, Y. L.; Liu, Q.; Li, T. S.; Lu, S. Y.; Asiri, A. M.; Xiong, X. L. et al. Cu2Sb decorated Cu nanowire arrays for selective electrocatalytic CO2 to CO conversion. Nano Res. 2021, 14, 2831–2836.

[13]

Zhong, H. X.; Meng, F. L.; Zhang, Q.; Liu, K. H.; Zhang, X. B. Highly efficient and selective CO2 electro-reduction with atomic Fe-C-N hybrid coordination on porous carbon nematosphere. Nano Res. 2019, 12, 2318–2323.

[14]

Chen, J. Y.; Wang, T. T.; Li, Z. J.; Yang, B.; Zhang, Q. H.; Lei, L. C.; Feng, P. Y.; Hou, Y. Recent progress and perspective of electrochemical CO2 reduction towards C2–C5 products over non-precious metal heterogeneous electrocatalysts. Nano Res. 2021, 14, 3188–3207.

[15]

Pan, Y.; Lin, R.; Chen, Y. J.; Liu, S. J.; Zhu, W.; Cao, X.; Chen, W. X.; Wu, K. L.; Cheong, W. C.; Wang, Y. et al. Design of single-atom Co–N5 catalytic site: A robust electrocatalyst for CO2 reduction with nearly 100% CO selectivity and remarkable stability. J. Am. Chem. Soc. 2018, 140, 4218–4221.

[16]

Ma, Y. B.; Wang, J.; Yu, J. L.; Zhou, J. W.; Zhou, X. C.; Li, H. X.; He, Z.; Long, H. W.; Wang, Y. H.; Lu, P. Y. et al. Surface modification of metal materials for high-performance electrocatalytic carbon dioxide reduction. Matter 2021, 4, 888–926.

[17]

Liu, L. F.; Zhang, J. L.; Cheng, X. Y.; Xu, M. Z.; Kang, X. C.; Wan, Q.; Han, B. X.; Wu, N. N.; Zheng, L. R.; Ma, C. Y. Amorphous NH2-MIL-68 as an efficient electro- and photo-catalyst for CO2 conversion reactions. Nano Res. 2023, 16, 181–188.

[18]

Lin, C.; Liu, Y.; Kong, X. D.; Geng, Z. G.; Zeng, J. Electrodeposited highly-oriented bismuth microparticles for efficient CO2 electroreduction into formate. Nano Res. 2022, 15, 10078–10083.

[19]

Yang, D. R.; Ni, B.; Wang, X. Heterogeneous catalysts with well-defined active metal sites toward CO2 electrocatalytic reduction. Adv. Energy Mater. 2020, 10, 2001142.

[20]

Zhou, Y.; Zheng, L. R.; Yang, D. R.; Yang, H. Z.; Wang, X. Boosting CO2 electroreduction via the synergistic effect of tuning cationic clusters and visible-light irradiation. Adv. Mater. 2021, 33, 2101886.

[21]

Yang, H. Z.; Yang, D. R.; Zhou, Y.; Wang, X. Polyoxometalate interlayered zinc-metallophthalocyanine molecular layer sandwich as photocoupled electrocatalytic CO2 reduction catalyst. J. Am. Chem. Soc. 2021, 143, 13721–13730.

[22]

Chen, S. H.; Zhang, Z. D.; Jiang, W. J.; Zhang, S. S.; Zhu, J. X.; Wang, L. Q.; Ou, H. H.; Zaman, S.; Tan, L.; Zhu, P. et al. Engineering water molecules activation center on multisite electrocatalysts for enhanced CO2 methanation. J. Am. Chem. Soc. 2022, 144, 12807–12815.

[23]

Bushuyev, O. S.; De Luna, P.; Dinh, C. T.; Tao, L.; Saur, G.; Van De Lagemaat, J.; Kelley, S. O.; Sargent, E. H. What should we make with CO2 and how can we make it. Joule 2018, 2, 825–832.

[24]

Liu, Y. Y.; Zhu, H. L.; Zhao, Z. H.; Huang, N. Y.; Liao, P. Q.; Chen, X. M. Insight into the effect of the d-orbital energy of copper ions in metal–organic frameworks on the selectivity of electroreduction of CO2 to CH4. ACS Catal. 2022, 12, 2749–2755.

[25]

Qiao, B. T.; Wang, A. Q.; Yang, X. F.; Allard, L. F.; Jiang, Z.; Cui, Y. T.; Liu, J. Y.; Li, J.; Zhang, T. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem. 2011, 3, 634–641.

[26]

Zhou, X.; Li, K.; Lin, Y. X.; Song, L.; Liu, J. C.; Liu, Y.; Zhang, L. L.; Wu, Z. J.; Song, S. Y.; Li, J. et al. A single-atom manipulation approach for synthesis of atomically mixed nanoalloys as efficient catalysts. Angew. Chem., Int. Ed. 2020, 59, 13568–13574.

[27]

Li, X. Y.; Cao, Y. F.; Xiong, J. R.; Li, J.; Xiao, H.; Li, X. Y.; Gou, Q. Q.; Ge, J. Enzyme-metal-single-atom hybrid catalysts for one-pot chemoenzymatic reactions. Chin. J. Catal. 2023, 44, 139–145.

[28]

Feng, Q. C.; Zhao, S.; Wang, Y.; Dong, J. C.; Chen, W. X.; He, D. S.; Wang, D. S.; Yang, J.; Zhu, Y. M.; Zhu, H. L. et al. Isolated single-atom pd sites in intermetallic nanostructures: High catalytic selectivity for semihydrogenation of alkynes. J. Am. Chem. Soc. 2017, 139, 7294–7301.

[29]

Lang, R.; Xi, W.; Liu, J. C.; Cui, Y. T.; Li, T. B.; Lee, A. F.; Chen, F.; Chen, Y.; Li, L.; Li, L. et al. Non defect-stabilized thermally stable single-atom catalyst. Nat. Commun. 2019, 10, 234.

[30]

Tang, Y.; Asokan, C.; Xu, M. J.; Graham, G. W.; Pan, X. Q.; Christopher, P.; Li, J.; Sautet, P. Rh single atoms on TiO2 dynamically respond to reaction conditions by adapting their site. Nat. Commun. 2019, 10, 4488.

[31]

Zhuo, H. Y.; Zhang, X.; Liang, J. X.; Yu, Q.; Xiao, H.; Li, J. Theoretical understandings of graphene-based metal single-atom catalysts: Stability and catalytic performance. Chem. Rev. 2020, 120, 12315–12341.

[32]

Liu, J. C.; Xiao, H.; Li, J. Constructing high-loading single-atom/cluster catalysts via an electrochemical potential window strategy. J. Am. Chem. Soc. 2020, 142, 3375–3383.

[33]

Liu, J. C.; Tang, Y.; Wang, Y. G.; Zhang, T.; Li, J. Theoretical understanding of the stability of single-atom catalysts. Natl. Sci. Rev. 2018, 5, 638–641.

[34]

Liu, J. C.; Wang, Y. G.; Li, J. Toward rational design of oxide-supported single-atom catalysts: Atomic dispersion of gold on ceria. J. Am. Chem. Soc. 2017, 139, 6190–6199.

[35]

Liang, X.; Fu, N. H.; Yao, S. C.; Li, Z.; Li, Y. D. The progress and outlook of metal single-atom-site catalysis. J. Am. Chem. Soc. 2022, 144, 18155–18174.

[36]

Wang, L. G.; Wang, D. S.; Li, Y. D. Single-atom catalysis for carbon neutrality. Carbon Energy 2022, 4, 1021–1079.

[37]

Wang, Q. S.; Zheng, X. B.; Wu, J. B.; Wang, Y.; Wang, D. S.; Li, Y. D. Recent progress in thermal conversion of CO2 via single-atom site catalysis. Small Struct. 2022, 3, 2200059.

[38]

Li, W. H.; Yang, J. R.; Wang, D. S.; Li, Y. D. Striding the threshold of an atom era of organic synthesis by single-atom catalysis. Chem 2022, 8, 119–140.

[39]

Xu, Q.; Zhang, J.; Wang, D. S.; Li, Y. D. Single-atom site catalysts supported on two-dimensional materials for energy applications. Chin. Chem. Lett. 2021, 32, 3771–3781.

[40]

Qu, Q. Y.; Ji, S. F.; Chen, Y. J.; Wang, D. S.; Li, Y. D. Design and structural engineering of single-atomic-site catalysts for acidic oxygen reduction reaction. Trends Chem. 2021, 3, 954–968.

[41]

Wang, Y.; Wang, D. S.; Li, Y. D. Rational design of single-atom site electrocatalysts: From theoretical understandings to practical applications. Adv. Mater. 2021, 33, 2008151.

[42]

Ji, S. F.; Chen, Y. J.; Wang, X. L.; Zhang, Z. D.; Wang, D. S.; Li, Y. D. Chemical synthesis of single atomic site catalysts. Chem. Rev. 2020, 120, 11900–11955.

[43]

Han, A. L.; Zhang, Z. D.; Yang, J. R.; Wang, D. S.; Li, Y. D. Carbon-supported single-atom catalysts for formic acid oxidation and oxygen reduction reactions. Small 2021, 17, 2004500.

[44]

Zheng, X. B.; Li, P.; Dou, S. X.; Sun, W. P.; Pan, H. G.; Wang, D. S.; Li, Y. D. Non-carbon-supported single-atom site catalysts for electrocatalysis. Energy Environ. Sci. 2021, 14, 2809–2858.

[45]

Yang, J. R.; Li, W. H.; Wang, D. S.; Li, Y. D. Electronic metal-support interaction of single-atom catalysts and applications in electrocatalysis. Adv. Mater. 2020, 32, 2003300.

[46]

Fu, N. H.; Liang, X.; Li, Z.; Li, Y. D. Single-atom site catalysts based on high specific surface area supports. Phys. Chem. Chem. Phys. 2022, 24, 17417–17438.

[47]

Wang, M. Y.; Shi, H.; Tian, M.; Chen, R. W.; Shu, J. P.; Zhang, Q.; Wang, Y. H.; Li, C. Y.; Wan, N.; Lei, S. Y. Single nickel atom-modified phosphorene nanosheets for electrocatalytic CO2 reduction. ACS Appl. Nano. Mater. 2021, 4, 11017–11030.

[48]

Jiang, J. C.; Chen, J. C.; Zhao, M. D.; Yu, Q.; Wang, Y. G.; Li, J. Rational design of copper-based single-atom alloy catalysts for electrochemical CO2 reduction. Nano Res. 2022, 15, 7116–7123.

[49]

Wang, G.; He, C. T.; Huang, R.; Mao, J. J.; Wang, D. S.; Li, Y. D. Photoinduction of Cu single atoms decorated on UiO-66-NH2 for enhanced photocatalytic reduction of CO2 to liquid fuels. J. Am. Chem. Soc. 2020, 142, 19339–19345.

[50]

Gu, H. L.; Wu, J.; Zhang, L. M. Recent advances in the rational design of single-atom catalysts for electrochemical CO2 reduction. Nano Res. 2022, 15, 9747–9763.

[51]

Wang, M. M.; Li, M.; Liu, Y. Q.; Zhang, C.; Pan, Y. Structural regulation of single-atomic site catalysts for enhanced electrocatalytic CO2 reduction. Nano Res. 2022, 15, 4925–4941.

[52]

Qu, J. L.; Xiao, J. W.; Chen, H. T.; Liu, X. P.; Wang, T. S.; Zhang, Q. F. Orbital symmetry matching: Achieving superior nitrogen reduction reaction over single-atom catalysts anchored on Mxene substrates. Chin. J. Catal. 2021, 42, 288–296.

[53]

Talib, S. H.; Yu, X. H.; Lu, Z. S.; Ahmad, K.; Yang, T. T.; Xiao, H.; Li, J. A polyoxometalate cluster-based single-atom catalyst for NH3 synthesis via an enzymatic mechanism. J. Mater. Chem. A 2022, 10, 6165–6177.

[54]

Jiang, Y. F.; Liu, J. C.; Xu, C. Q.; Li, J.; Xiao, H. Breaking the scaling relations for efficient N2-to-NH3 conversion by a bowl active site design: Insight from LaRuSi and isostructural electrides. Chin. J. Catal. 2022, 43, 2183–2192.

[55]

Chen, Z.; Zhao, J. X.; Cabrera, C. R.; Chen, Z. F. Computational screening of efficient single-atom catalysts based on graphitic carbon nitride (g-C3N4) for nitrogen electroreduction. Small Methods 2019, 3, 1800368.

[56]

Zhao, W. H.; Chen, L. L.; Zhang, W. H.; Yang, J. L. Single Mo1(W1, Re1) atoms anchored in pyrrolic-N3 doped graphene as efficient electrocatalysts for the nitrogen reduction reaction. J. Mater. Chem. A 2021, 9, 6547–6554.

[57]

Meng, Y.; Liang, J. X.; Zhu, C.; Xu, C. Q.; Li, J. Theoretical studies of MXene-supported single-atom catalysts: Os1/Ti2CS2 for low-temperature CO oxidation. Sci. China Mater. 2022, 65, 1303–1312.

[58]

Liang, J. X.; Yang, X. F.; Wang, A. Q.; Zhang, T.; Li, J. Theoretical investigations of non-noble metal single-atom catalysis: Ni1/FeOx for CO oxidation. Catal. Sci. Technol. 2016, 6, 6886–6892.

[59]

Liang, J. X.; Yang, X. F.; Xu, C. Q.; Zhang, T.; Li, J. Catalytic ativities of single-atom catalysts for CO oxidation: Pt1/FeOx vs. Fe1/FeOx. Chin. J. Catal. 2017, 38, 1566–1573.

[60]

Zhu, C.; Liang, J. X.; Wang, Y. G.; Li, J. Non-noble metal single-atom catalyst with MXene support: Fe1/Ti2CO2 for CO oxidation. Chin. J. Catal. 2022, 43, 1830–1841.

[61]

Hülsey, M. J.; Baskaran, S.; Ding, S. P.; Wang, S. K.; Asakura, H.; Furukawa, S.; Xi, S. B.; Yu, Q.; Xu, C. Q.; Li, J. et al. Identifying key descriptors for the single-atom catalyzed CO oxidation. CCS Chem. 2022, 4, 3296–3308.

[62]

Talib, S. H.; Baskaran, S.; Yu, X. H.; Yu, Q.; Bashir, B.; Muhammad, S.; Hussain, S.; Chen, X. N.; Li, J. Non-noble metal single-atom catalyst of Co1/MXene (Mo2CS2) for CO oxidation. Sci. China Mater. 2021, 64, 651–663.

[63]

Baskaran, S.; Xu, C. Q.; Jiang, Y. F.; Wang, Y. G.; Li, J. Phosphorene supported single-atom catalysts for CO oxidation: A computational study. ChemPhysChem 2021, 22, 378–385.

[64]

Chen, Y. J.; Zhuo, H. Y.; Pan, Y.; Liang, J. X.; Liu, C. G.; Li, J. Triazine COF-supported single-atom catalyst (Pd1/trzn-COF) for CO oxidation. Sci. China Mater. 2021, 64, 1939–1951.

[65]

Liang, J. X.; Yu, Q.; Yang, X. F.; Zhang, T.; Li, J. A systematic theoretical study on FeOx-supported single-atom catalysts: M1/FeOx for CO oxidation. Nano Res. 2018, 11, 1599–1611.

[66]

Zhang, Z. W.; Zhang, L.; Wang, X. Y.; Feng, Y.; Liu, X. W.; Sun, W. M. Rational design of graphyne-based dual-atom site catalysts for CO oxidation. Nano Res. 2023, 16, 343–351.

[67]

Li, Z.; Chen, Y. J.; Ji, S. F.; Tang, Y.; Chen, W. X.; Li, A.; Zhao, J.; Xiong, Y.; Wu, Y. E.; Gong, Y. et al. Iridium single-atom catalyst on nitrogen-doped carbon for formic acid oxidation synthesized using a general host-guest strategy. Nat. Chem. 2020, 12, 764–772.

[68]

Liu, Y.; Liu, J. C.; Li, T. H.; Duan, Z. H.; Zhang, T. Y.; Yan, M.; Li, W. L.; Xiao, H.; Wang, Y. G.; Chang, C. R. et al. Unravelling the enigma of nonoxidative conversion of methane on iron single-atom catalysts. Angew. Chem., Int. Ed. 2020, 59, 18586–18590.

[69]

Li, T. B.; Liu, F.; Tang, Y.; Li, L.; Miao, S.; Su, Y.; Zhang, J. Y.; Huang, J. H.; Sun, H.; Haruta, M. et al. Maximizing the number of interfacial sites in single-atom catalysts for the highly selective, solvent-free oxidation of primary alcohols. Angew. Chem., Int. Ed. 2018, 57, 7795–7799.

[70]

Liang, J. X.; Lin, J.; Liu, J. Y.; Wang, X. D.; Zhang, T.; Li, J. Dual metal active sites in an Ir1/FeOx single-atom catalyst: A redox mechanism for the water-gas shift reaction. Angew. Chem., Int. Ed. 2020, 59, 12868–12875.

[71]

Lin, J.; Wang, A. Q.; Qiao, B. T.; Liu, X. Y.; Yang, X. F.; Wang, X. D.; Liang, J. X.; Li, J.; Liu, J. Y.; Zhang, T. Remarkable performance of Ir1/FeOx single-atom catalyst in water gas shift reaction. J. Am. Chem. Soc. 2013, 135, 15314–15317.

[72]

Yang, S.; Li, X. W.; Tan, T. Y.; Mao, J. N.; Xu, Q.; Liu, M. H.; Miao, Q. Y.; Mei, B. B.; Qiao, P. Z.; Gu, S. Q. et al. A fully-conjugated covalent organic framework-derived carbon supporting ultra-close single atom sites for ORR. Appl. Catal. B: Environ. 2022, 307, 121147.

[73]

Zeng, H. H.; Liu, X. Y.; Chen, F. B.; Chen, Z. G.; Fan, X. L.; Lau, W. Single atoms on a nitrogen-doped boron phosphide monolayer: A new promising bifunctional electrocatalyst for ORR and OER. ACS Appl. Mater. Interfaces 2020, 12, 52549–52559.

[74]

Liang, L.; Jin, H. H.; Zhou, H.; Liu, B. S.; Hu, C. X.; Chen, D.; Wang, Z.; Hu, Z. Y.; Zhao, Y. F.; Li, H. W. et al. Cobalt single atom site isolated Pt nanoparticles for efficient ORR and HER in acid media. Nano Energy 2021, 88, 106221.

[75]

Wang, Y. R.; Hu, R. M.; Li, Y. C.; Wang, F. H.; Shang, J. X.; Shui, J. L. High-throughput screening of carbon-supported single metal atom catalysts for oxygen reduction reaction. Nano Res. 2022, 15, 1054–1060.

[76]

Cao, T.; Lin, R.; Liu, S. J.; Cheong, W. C. M.; Li, Z.; Wu, K. L.; Zhu, Y. Q.; Wang, X. L.; Zhang, J.; Li, Q. H. et al. Atomically dispersed Ni anchored on polymer-derived mesh-like N-doped carbon nanofibers as an efficient CO2 electrocatalytic reduction catalyst. Nano Res. 2022, 15, 3959–3963.

[77]

Liu, K. T.; Li, X. D.; Liang, L.; Wu, J.; Jiao, X. C.; Xu, J. Q.; Sun, Y. F.; Xie, Y. Ni-doped ZnCo2O4 atomic layers to boost the selectivity in solar-driven reduction of CO2. Nano Res. 2018, 11, 2897–2908.

[78]

Yan, X. L.; Sun, W.; Fan, L. M.; Duchesne, P. N.; Wang, W.; Kübel, C.; Wang, D.; Kumar, S. G. H.; Li, Y. F.; Tavasoli, A. et al. Nickel@siloxene catalytic nanosheets for high-performance CO2 methanation. Nat. Commun. 2019, 10, 2608.

[79]

Li, X. G.; Bi, W. T.; Chen, M. L.; Sun, Y. X.; Ju, H. X.; Yan, W. S.; Zhu, J. F.; Wu, X. J.; Chu, W. S.; Wu, C. Z. et al. Exclusive Ni–N4 sites realize near-unity CO selectivity for electrochemical CO2 reduction. J. Am. Chem. Soc. 2017, 139, 14889–14892.

[80]

Guo, C.; Zhang, T.; Deng, X. X.; Liang, X. Y.; Guo, W. Y.; Lu, X. Q.; Wu, C. M. L. Electrochemical CO2 reduction to C1 products on single nickel/cobalt/iron-doped graphitic carbon nitride: A DFT study. ChemSusChem 2019, 12, 5126–5132.

[81]

Sun, T. T.; Xu, L. B.; Wang, D. S.; Li, Y. D. Metal organic frameworks derived single atom catalysts for electrocatalytic energy conversion. Nano Res. 2019, 12, 2067–2080.

[82]

Kandiah, M.; Nilsen, M. H.; Usseglio, S.; Jakobsen, S.; Olsbye, U.; Tilset, M.; Larabi, C.; Quadrelli, E. A.; Bonino, F.; Lillerud, K. P. Synthesis and stability of tagged UiO-66 Zr-MOFs. Chem. Mater. 2010, 22, 6632–6640.

[83]

Feng, X.; Jena, H. S.; Krishnaraj, C.; Leus, K.; Wang, G. B.; Chen, H.; Jia, C. M.; Van Der Voort, P. Generating catalytic sites in UiO-66 through defect engineering. ACS Appl. Mater. Interfaces 2021, 13, 60715–60735.

[84]

Liang, W. B.; Li, L.; Hou, J. W.; Shepherd, N. D.; Bennett, T. D.; D'Alessandro, D. M.; Chen, V. Linking defects, hierarchical porosity generation and desalination performance in metal–organic frameworks. Chem. Sci. 2018, 9, 3508–3516.

[85]

Wang, H. Q. Nanostructure@metal–organic frameworks (MOFs) for catalytic carbon dioxide (CO2) conversion in photocatalysis, electrocatalysis, and thermal catalysis. Nano Res. 2022, 15, 2834–2854.

[86]

Dong, L. Z.; Lu, Y. F.; Wang, R.; Zhou, J.; Zhang, Y.; Zhang, L.; Liu, J.; Li, S. L.; Lan, Y. Q. Porous copper cluster-based MOF with strong cuprophilic interactions for highly selective electrocatalytic reduction of CO2 to CH4. Nano Res. 2022, 15, 10185–10193.

[87]

Löbbert, L.; Chheda, S.; Zheng, J.; Khetrapal, N.; Schmid, J.; Zhao, R. X.; Gaggioli, C. A.; Camaioni, D. M.; Bermejo-Deval, R.; Gutiérrez, O. Y. et al. Influence of 1-butene adsorption on the dimerization activity of single metal cations on UiO-66 nodes. J. Am. Chem. Soc. 2023, 145, 1407–1422.

[88]

Abdel-Mageed, A. M.; Rungtaweevoranit, B.; Parlinska-Wojtan, M.; Pei, X. K.; Yaghi, O. M.; Behm, R. J. Highly active and stable single-atom Cu catalysts supported by a metal–organic framework. J. Am. Chem. Soc. 2019, 141, 5201–5210.

[89]

Nguyen, H. G. T.; Schweitzer, N. M.; Chang, C. Y.; Drake, T. L.; So, M. C.; Stair, P. C.; Farha, O. K.; Hupp, J. T.; Nguyen, S. T. Vanadium-node-functionalized UiO-66: A thermally stable MOF-supported catalyst for the gas-phase oxidative dehydrogenation of cyclohexene. ACS Catal. 2014, 4, 2496–2500.

[90]

Fang, G. Q.; Hu, J. N.; Tian, L. C.; Liang, J. X.; Lin, J.; Li, L.; Zhu, C.; Wang, X. D. Zirconium-oxo nodes of MOFs with tunable electronic properties provide effective ·OH species for enhanced methane hydroxylation. Angew. Chem., Int. Ed. 2022, 61, e202205077.

[91]

Delley, B. An all-electron numerical method for solving the local density functional for polyatomic molecules. J. Chem. Phys. 1990, 92, 508–517.

[92]

Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

[93]

Kresse, G.; Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 1993, 47, 558–561.

[94]

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1997, 77, 3865–3868.

[95]

Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

[96]

Dudarev, S. L.; Botton, G. A.; Savrasov, S. Y.; Szotek, Z.; Temmerman, W. M.; Sutton, A. P. Electronic structure and elastic properties of strongly correlated metal oxides from first principles: LSDA + U, SIC-LSDA and EELS study of UO2 and NiO. Phys. Stat. Sol. 1998, 166, 429–443.

[97]

Liechtenstein, A. I.; Anisimov, V. I.; Zaanen, J. Density-functional theory and strong interactions: Orbital ordering in mott-hubbard insulators. Phys. Rev. B 1995, 52, R5467–R5470.

[98]

Cavka, J. H.; Jakobsen, S.; Olsbye, U.; Guillou, N.; Lamberti, C.; Bordiga, S.; Lillerud, K. P. A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. J. Am. Chem. Soc. 2008, 130, 13850–13851.

[99]

Monkhorst, H. J.; Pack, J. D. Special points for brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192.

[100]

Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104.

[101]

Tkatchenko, A.; Scheffler, M. Accurate molecular van der waals interactions from ground-state electron density and free-atom reference data. Phys. Rev. Lett. 2009, 102, 073005.

[102]

Mathew, K.; Sundararaman, R.; Letchworth-Weaver, K.; Arias, T. A.; Hennig, R. G. Implicit solvation model for density-functional study of nanocrystal surfaces and reaction pathways. J. Chem. Phys. 2014, 140, 084106.

[103]

Henkelman, G.; Jónsson, H. A dimer method for finding saddle points on high dimensional potential surfaces using only first derivatives. J. Chem. Phys. 1999, 111, 7010–7022.

[104]

Nørskov, J. K.; Rossmeisl, J.; Logadottir, A.; Lindqvist, L.; Kitchin, J. R.; Bligaard, T.; Jónsson, H. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 2004, 108, 17886–17892.

[105]

Katz, M. J.; Klet, R. C.; Moon, S. Y.; Mondloch, J. E.; Hupp, J. T.; Farha, O. K. One step backward is two steps forward: Enhancing the hydrolysis rate of UiO-66 by decreasing [OH]. ACS Catal. 2015, 5, 4637–4642.

[106]

Liu, S. Z.; Cheng, L.; Li, K.; Yin, C.; Tang, H.; Wang, Y.; Wu, Z. J. RuN4 doped graphene oxide, a highly efficient bifunctional catalyst for oxygen reduction and CO2 reduction from computational study. ACS Sustainable Chem. Eng. 2019, 7, 8136–8144.

Nano Research
Pages 8987-8995
Cite this article:
Tian L-C, Hu J-N, Meng Y, et al. Ultrastable nickel single-atom catalysts with high activity and selectivity for electrocatalytic CO2 methanation. Nano Research, 2023, 16(7): 8987-8995. https://doi.org/10.1007/s12274-023-5640-z
Topics:

7852

Views

10

Crossref

11

Web of Science

11

Scopus

0

CSCD

Altmetrics

Received: 10 January 2023
Revised: 27 February 2023
Accepted: 02 March 2023
Published: 25 April 2023
© Tsinghua University Press 2023
Return