Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Synergistic catalysis opens up a new venue to improve the comprehensive application of the catalyst. Herein, a composite catalyst (Mo-Pd@N-C) consisting of the N-doped carbon derived from pyrolysis of spherical polypyrrole and MoPd nanoparticles (NPs) was constructed to emphasize the strong metal–support interaction for robust oxygen reduction reaction (ORR). The enhanced anchoring between the MoPd NPs and the substrate, and the N-species formed on the carbon matrix make the Mo-Pd@N-C deliver excellent performance with a half-wave potential of 0.945 V (vs. reversible hydrogen electrode (RHE)) for ORR, superior than that of commercial Pt/C (0.86 V). More importantly, it shows a negligible half-wave potential decline (< 5 mV) and only ~ 20% of mass activity (MA) attenuation after 30,000 cycles stability test, obviously better than those of Pt/C (~ 70% of MA attenuation and ~ 30 mV of half-wave potential decline after only 15,000 cycles). This work highlights a novel synergistic method to prolong the life and improve the commercial prospects of the catalysts.
Chu, S.; Majumdar, A. Opportunities and challenges for a sustainable energy future. Nature 2012, 488, 294–303.
Lewis, N. S.; Nocera, D. G. Powering the planet: Chemical challenges in solar energy utilization. Proc. Natl. Acad. Sci. USA 2006, 103, 15729–15735.
Amal, R.; Zhao, H. J.; Wang, D.; Wang, L. Z. Renewable energy conversion and storage. Adv. Energy Mater. 2017, 7, 1703091.
Ager, J. W.; Lapkin, A. A. Chemical storage of renewable energy. Science 2018, 360, 707–708.
Hosseini, S. E.; Wahid, M. A. Hydrogen production from renewable and sustainable energy resources: Promising green energy carrier for clean development. Renew. Sust. Energy Rev. 2016, 57, 850–866.
Wang, Y. F.; Leung, D. Y. C.; Xuan, J.; Wang, H. Z. A review on unitized regenerative fuel cell technologies, part-A: Unitized regenerative proton exchange membrane fuel cells. Renew. Sust. Energy Rev. 2016, 65, 961–977.
Zhuang, L. Dual-core Fe catalyst brings major enhancements in ORR kinetics. Trends Chem. 2020, 2, 872–873.
Park, M. H.; Liang, C. P.; Lee, T. H.; Agyeman, D. A.; Yang, J.; Lau, V. W. H.; Choi, S. I.; Jang, H. W.; Cho, K.; Kang, Y. M. Regulating the catalytic dynamics through a crystal structure modulation of bimetallic catalyst. Adv. Energy Mater. 2020, 10, 1903225.
Seh, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I.; Nørskov, J. K.; Jaramillo, T. F. Combining theory and experiment in electrocatalysis: Insights into materials design. Science 2017, 355, eaad4998.
Dey, S.; Mondal, B.; Chatterjee, S.; Rana, A.; Amanullah, S.; Dey, A. Molecular electrocatalysts for the oxygen reduction reaction. Nat. Rev. Chem. 2017, 1, 0098.
Kato, M.; Fujibayashi, N.; Abe, D.; Matsubara, N.; Yasuda, S.; Yagi, I. Impact of heterometallic cooperativity of iron and copper active sites on electrocatalytic oxygen reduction kinetics. ACS Catal. 2021, 11, 2356–2365.
Zhou, X.; Liu, T. T.; Zhao, G. F.; Yang, X. F.; Guo, H. Cooperative catalytic interface accelerates redox kinetics of sulfur species for high-performance Li-S batteries. Energy Storage Mater. 2021, 40, 139–149.
Wang, Y.; Zheng, X. B.; Wang, D. S. Design concept for electrocatalysts. Nano Res. 2022, 15, 1730–1752.
Zhao, S. Y.; Liu, T.; Dai, Y. W.; Wang, J.; Wang, Y.; Guo, Z. J.; Yu, J.; Bello, I. T.; Ni, M. Pt/C as a bifunctional ORR/iodide oxidation reaction (IOR) catalyst for Zn-air batteries with unprecedentedly high energy efficiency of 76.5%. Appl. Catal. B: Environ. 2023, 320, 121992.
Li, R. Z.; Wang, D. S. Understanding the structure–performance relationship of active sites at atomic scale. Nano Res. 2022, 15, 6888–6923.
Shao, M. H.; Chang, Q. W.; Dodelet, J. P.; Chenitz, R. Recent advances in electrocatalysts for oxygen reduction reaction. Chem. Rev. 2016, 116, 3594–3657.
Vesborg, P. C. K.; Jaramillo, T. F. Addressing the terawatt challenge: Scalability in the supply of chemical elements for renewable energy. RSC Adv. 2012, 2, 7933–7947.
Toda, T.; Igarashi, H.; Uchida, H.; Watanabe, M. Enhancement of the electroreduction of oxygen on Pt alloys with Fe, Ni, and Co. J. Electrochem. Soc. 1999, 146, 3750–3756.
Wang, T. L.; Chutia, A.; Brett, D. J. L.; Shearing, P. R.; He, G. J.; Chai, G. L.; Parkin, I. P. Palladium alloys used as electrocatalysts for the oxygen reduction reaction. Energy Environ. Sci. 2021, 14, 2639–2669.
Rao, M. L. B.; Damjanovic, A.; Bockris, J. O. M. Oxygen adsorption related to the unpaired d-electrons in transition metals. J. Phys. Chem. 1963, 67, 2508–2509.
Pattabiraman, R. Electrochemical investigations on carbon supported palladium catalysts. Appl. Catal. A: Gen. 1997, 153, 9–20.
Shao, M. H.; Sasaki, K.; Adzic, R. R. Pd-Fe nanoparticles as electrocatalysts for oxygen reduction. J. Am. Chem. Soc. 2006, 128, 3526–3527.
Hong, J. W.; Kang, S. W.; Choi, B. S.; Kim, D.; Lee, S. B.; Han, S. W. Controlled synthesis of Pd-Pt alloy hollow nanostructures with enhanced catalytic activities for oxygen reduction. ACS Nano 2012, 6, 2410–2419.
Lu, X. Y.; Ahmadi, M.; DiSalvo, F. J.; Abruña, H. D. Enhancing the electrocatalytic activity of Pd/M (M = Ni, Mn) nanoparticles for the oxygen reduction reaction in alkaline media through electrochemical dealloying. ACS Catal. 2020, 10, 5891–5898.
Duan, H. M.; Xu, C. X. Nanoporous PdCr alloys as highly active electrocatalysts for oxygen reduction reaction. Phys. Chem. Chem. Phys. 2016, 18, 4166–4173.
Shao, M. H.; Yu, T.; Odell, J. H.; Jin, M. S.; Xia, Y. N. Structural dependence of oxygen reduction reaction on palladium nanocrystals. Chem. Commun. 2011, 47, 6566–6568.
Erikson, H.; Sarapuu, A.; Tammeveski, K.; Solla-Gullón, J.; Feliu, J. M. Enhanced electrocatalytic activity of cubic Pd nanoparticles towards the oxygen reduction reaction in acid media. Electrochem. Commun. 2011, 13, 734–737.
Wang, H. W.; Luo, W. J.; Zhu, L. J.; Zhao, Z. P.; E, B.; Tu, W. Z.; Ke, X. X.; Sui, M. L.; Chen, C. F.; Chen, Q. et al. Synergistically enhanced oxygen reduction electrocatalysis by subsurface atoms in ternary PdCuNi alloy catalysts. Adv. Funct. Mater. 2018, 28, 1707219.
Wu, X. D.; Ni, C. S.; Man, J. W.; Shen, X. D.; Cui, S.; Chen, X. B. A strategy to promote the ORR electrocatalytic activity by the novel engineering bunched three-dimensional Pd-Cu alloy aerogel. Chem. Eng. J. 2023, 454, 140293.
Shao, M. H.; Liu, P.; Zhang, J. L.; Adzic, R. Origin of enhanced activity in palladium alloy electrocatalysts for oxygen reduction reaction. J. Phys. Chem. B 2007, 111, 6772–6775.
Fernández, J. L.; Walsh, D. A.; Bard, A. J. Thermodynamic guidelines for the design of bimetallic catalysts for oxygen electroreduction and rapid screening by scanning electrochemical microscopy. M-Co (M: Pd, Ag, Au). J. Am. Chem. Soc. 2005, 127, 357–365.
Luo, M. C.; Zhao, Z. L.; Zhang, Y. L.; Sun, Y. J.; Xing, Y.; Lv, F.; Yang, Y.; Zhang, X.; Hwang, S.; Qin, Y. N. et al. PdMo bimetallene for oxygen reduction catalysis. Nature 2019, 574, 81–85.
Singh, S. K.; Takeyasu, K.; Nakamura, J. Active sites and mechanism of oxygen reduction reaction electrocatalysis on nitrogen-doped carbon materials. Adv. Mater. 2019, 31, 1804297.
Noh, S. H.; Seo, M. H.; Kang, J.; Okajima, T.; Han, B.; Ohsaka, T. Towards a comprehensive understanding of FeCo coated with N-doped carbon as a stable bi-functional catalyst in acidic media. NPG Asia Mater. 2016, 8, e312.
Kim, S. M.; Heo, Y. K.; Bae, K. T.; Oh, Y. T.; Lee, M. H.; Lee, S. Y. In situ formation of nitrogen-doped onion-like carbon as catalyst support for enhanced oxygen reduction activity and durability. Carbon 2016, 101, 420–430.
Kwak, D. H.; Han, S. B.; Kim, D. H.; Park, J. Y.; Ma, K. B.; Won, J. E.; Kim, M. C.; Moon, S. H.; Park, K. W. Investigation of the durability of Fe/N-doped mesoporous carbon nanostructure as a non-precious metal catalyst for oxygen reduction reaction in acid medium. Carbon 2018, 140, 189–200.
Gou, W. Y.; Bian, J. H.; Zhang, M. K.; Xia, Z. M.; Liu, Y. X.; Yang, Y. D.; Dong, Q. C.; Li, J. Y.; Qu, Y. Q. Interfacial metal–nitrogen units of NiCo/nitrogen-doped carbon for robust oxygen reduction reaction. Carbon 2019, 155, 545–552.
Lin, L.; Zhu, Q.; Xu, A. W. Noble-metal-free Fe-N/C catalyst for highly efficient oxygen reduction reaction under both alkaline and acidic conditions. J. Am. Chem. Soc. 2014, 136, 11027–11033.
Zhang, K.; He, Y. C.; Guo, R. Y.; Wang, W. C.; Zhan, Q.; Li, R.; He, T. O.; Wu, C.; Jin, M. S. Interstitial carbon-doped PdMo bimetallene for high-performance oxygen reduction reaction. ACS Energy Lett. 2022, 7, 3329–3336.
Han, L. L.; Liu, X. J.; Chen, J. P.; Lin, R. Q.; Liu, H. X.; Lü, F.; Bak, S.; Liang, Z. X.; Zhao, S. Z.; Stavitski, E. et al. Atomically dispersed molybdenum catalysts for efficient ambient nitrogen fixation. Angew. Chem., Int. Ed. 2019, 58, 2525–2525.
Huang, X. Q.; Zhao, Z. P.; Cao, L.; Chen, Y.; Zhu, E. B.; Lin, Z. Y.; Li, M. F.; Yan, A. M.; Zettl, A.; Wang, Y. M. et al. High-performance transition metal-doped Pt3Ni octahedra for oxygen reduction reaction. Science 2015, 348, 1230–1234.
Sengar, S. K.; Mehta, B. R.; Govind. Size and alloying induced changes in lattice constant, core, and valance band binding energy in Pd-Ag, Pd, and Ag nanoparticles: Effect of in-flight sintering temperature. J. Appl. Phys. 2012, 112, 014307.
Chen, W. X.; Pei, J. J.; He, C. T.; Wan, J. W.; Ren, H. L.; Zhu, Y. Q.; Wang, Y.; Dong, J. C.; Tian, S. B.; Cheong, W. C. et al. Rational design of single molybdenum atoms anchored on N-doped carbon for effective hydrogen evolution reaction. Angew. Chem., Int. Ed. 2017, 56, 16086–16090.
Hui, L.; Xue, Y. R.; Yu, H. D.; Liu, Y. X.; Fang, Y.; Xing, C. Y.; Huang, B. L.; Li, Y. L. Highly efficient and selective generation of ammonia and hydrogen on a graphdiyne-based catalyst. J. Am. Chem. Soc. 2019, 141, 10677–10683.
Ha, Y.; Fei, B.; Yan, X. X.; Xu, H. B.; Chen, Z. L.; Shi, L. X.; Fu, M. S.; Xu, W.; Wu, R. B. Atomically dispersed Co-pyridinic N-C for superior oxygen reduction reaction. Adv. Energy Mater. 2020, 10, 2002592.