AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Membrane fusion reverse micelle platforms as potential oral nanocarriers for efficient internalization of free hydrophilic peptides

Mengting Lin1,§Linjie Wu1,§Yiying Lu1,2,§Xiaoyan Bao1Haiqing Zhong1Qi Dai1,4Qiyao Yang1,4Yiyi Xia1Xin Tan1Yaxin Qin1Ruolin Jiang1Min Han1,3,4( )
Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
Department of Pharmacy, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310058, China

§ Mengting Lin, Linjie Wu, and Yiying Lu contributed equally to this work.

Show Author Information
An erratum to this article is available online at:

Graphical Abstract

Schematic illustration of reverse micelle/self-emulsifying drug delivery system (RM/SEDDS) gastrointestinal transport, mucus penetration and membrane fusion processes to facilitate the internalization of free hydrophilic peptides.

Abstract

Orally administered peptides or proteins are garnering increasing preference owing to their superiority in terms of patient compliance and convenience. However, the development of oral protein formulations has stalled due to the low bioavailability of macromolecules that encounter the aggressive gastrointestinal environment and harsh mucus villi barrier. Herein, we propose an ideal reverse micelle/self-emulsifying drug delivery system (RM/SEDDS) nanoplatform that is capable of improving the oral bioavailability of hydrophilic peptides by preventing enzymatic degradation and enhancing mucosal permeability. Upon the passage through the mucus, the self-emulsifying drug delivery system with optimal surface properties effectively penetrates the viscoelastic mucosal barrier, followed by the exposure of the inner reverse micelle amphipathic vectors, which autonomously form continua with the lipidic cell membrane and facilitate the internalization of drugs. This membrane-fusion mechanism inaugurates a new way for hydrophilic peptide delivery in the free form, circumventing the traditional impediments of the cellular internalization of nanocarriers and subsequent poor release of drugs. And more importantly, reverse micelles are not spatially specific to the laden drugs, which enables their delivery for a myriad of peptide clinical drugs. In conclusion, as an exquisitely designed nanoplatform, RM/SEDDS overcomes multiple physiological barriers and opens a new path for drug cellular entry, providing new prospects for the development of oral drug delivery systems.

Electronic Supplementary Material

Download File(s)
12274_2023_5645_MOESM1_ESM.pdf (1.3 MB)

References

[1]

Hamman, J. H.; Enslin, G. M.; Kotzé, A. F. Oral delivery of peptide drugs: Barriers and developments. Biodrugs 2005, 19, 165–177.

[2]

Anselmo, A. C.; Gokarn, Y.; Mitragotri, S. Non-invasive delivery strategies for biologics. Nat. Rev. Drug Discov. 2019, 18, 19–40.

[3]

Maher, S.; Mrsny, R. J.; Brayden, D. J. Intestinal permeation enhancers for oral peptide delivery. Adv. Drug Deliv. Rev. 2016, 106, 277–319.

[4]

Durán-Lobato, M.; Niu, Z. G.; Alonso, M. J. Oral delivery of biologics for precision medicine. Adv. Mater. 2020, 32, 1901935.

[5]

Chen, G. Y.; Kang, W. R.; Li, W. Q.; Chen, S. M.; Gao, Y. F. Oral delivery of protein and peptide drugs: From non-specific formulation approaches to intestinal cell targeting strategies. Theranostics 2022, 12, 1419–1439.

[6]

Zhu, Q. G.; Chen, Z. J.; Paul, P. K.; Lu, Y.; Wu, W.; Qi, J. P. Oral delivery of proteins and peptides: Challenges, status quo and future perspectives. Acta Pharm. Sin. B 2021, 11, 2416–2448.

[7]

Xiao, Y. F.; Tang, Z. M.; Wang, J. Q.; Liu, C.; Kong, N.; Farokhzad, O. C.; Tao, W. Oral insulin delivery platforms: Strategies to address the biological barriers. Angew. Chem., Int. Ed. 2020, 59, 19787–19795.

[8]

Dubey, S. K.; Parab, S.; Dabholkar, N.; Agrawal, M.; Singhvi, G.; Alexander, A.; Bapat, R. A.; Kesharwani, P. Oral peptide delivery: Challenges and the way ahead. Drug Discov. Today 2021, 26, 931–950.

[9]

Cao, Y. X.; Rewatkar, P.; Wang, R.; Hasnain, S. Z.; Popat, A.; Kumeria, T. Nanocarriers for oral delivery of biologics: Small carriers for big payloads. Trends Pharmacol. Sci. 2021, 42, 957–972.

[10]

Reinholz, J.; Landfester, K.; Mailänder, V. The challenges of oral drug delivery via nanocarriers. Drug Deliv. 2018, 25, 1694–1705.

[11]

Andretto, V.; Rosso, A.; Briancon, S.; Lollo, G. Nanocomposite systems for precise oral delivery of drugs and biologics. Drug Deliv. Transl. Res. 2021, 11, 445–470.

[12]

Liu, M. Y.; Wang, F. L.; Pu, C. F.; Tang, W. T.; Sun, Q. J. Nanoencapsulation of lutein within lipid-based delivery systems: Characterization and comparison of zein peptide stabilized nano-emulsion, solid lipid nanoparticle, and nano-structured lipid carrier. Food Chem. 2021, 358, 129840.

[13]

Matougui, N.; Boge, L.; Groo, A. C.; Umerska, A.; Ringstad, L.; Bysell, H.; Saulnier, P. Lipid-based nanoformulations for peptide delivery. Int. J. Pharm. 2016, 502, 80–97.

[14]

Twarog, C.; Fattah, S.; Heade, J.; Maher, S.; Fattal, E.; Brayden, D. J. Intestinal permeation enhancers for oral delivery of macromolecules: A comparison between salcaprozate sodium (SNAC) and sodium caprate (C10). Pharmaceutics 2019, 11, 78.

[15]

Zizzari, A. T.; Pliatsika, D.; Gall, F. M.; Fischer, T.; Riedl, R. New perspectives in oral peptide delivery. Drug Discov. Today 2021, 26, 1097–1105.

[16]

Chen, H.; Lu, Y.; Shi, S.; Zhang, Q.; Cao, X. L.; Sun, L.; An, D.; Zhang, X. J.; Kong, X. L.; Liu, J. P. Design and development of a new glucagon-like peptide-1 receptor agonist to obtain high oral bioavailability. Pharm. Res. 2022, 39, 1891–1906.

[17]

Twarog, C.; McCartney, F.; Harrison, S. M.; Illel, B.; Fattal, E.; Brayden, D. J. Comparison of the effects of the intestinal permeation enhancers, SNAC and sodium caprate (C10): Isolated rat intestinal mucosae and sacs. Eur. J. Pharm. Sci. 2021, 158, 105685.

[18]

Feigh, M.; Henriksen, K.; Andreassen, K. V.; Hansen, C.; Henriksen, J. E.; Beck-Nielsen, H.; Christiansen, C.; Karsdal, M. A. A novel oral form of salmon calcitonin improves glucose homeostasis and reduces body weight in diet-induced obese rats. Diabetes Obes. Metab. 2011, 13, 911–920.

[19]

Gonze, M. D.; Salartash, K.; Sternbergh III, W. C.; Baughman, R. A.; Leone-Bay, A.; Money, S. R. Orally administered unfractionated heparin with carrier agent is therapeutic for deep venous thrombosis. Circulation 2000, 101, 2658–2661.

[20]

Binkley, N.; Bolognese, M.; Sidorowicz-Bialynicka, A.; Vally, T.; Trout, R.; Miller, C.; Buben, C. E.; Gilligan, J. P.; Krause, D. S.; Oral Calcitonin in Postmenopausal Osteoporosis (ORACAL) Investigators. A phase 3 trial of the efficacy and safety of oral recombinant calcitonin: The Oral Calcitonin in Postmenopausal Osteoporosis (ORACAL) trial. J. Bone Miner. Res. 2012, 27, 1821–1829.

[21]

Lewis, A. L.; McEntee, N.; Holland, J.; Patel, A. Development and approval of rybelsus (oral semaglutide): Ushering in a new era in peptide delivery. Drug Deliv. Transl. Res. 2022, 12, 1–6.

[22]

Maher, S.; Brayden, D. J. Formulation strategies to improve the efficacy of intestinal permeation enhancers. Adv. Drug Deliv. Rev. 2021, 177, 113925.

[23]

Williams, A. C.; Barry, B. W. Penetration enhancers. Adv. Drug Deliv. Rev. 2004, 56, 603–618.

[24]

Maher, S.; Leonard, T. W.; Jacobsen, J.; Brayden, D. J. Safety and efficacy of sodium caprate in promoting oral drug absorption: From in vitro to the clinic. Adv. Drug Deliv. Rev. 2009, 61, 1427–1449.

[25]

Ita, K. B. Chemical penetration enhancers for transdermal drug delivery - success and challenges. Curr. Drug Deliv. 2015, 12, 645–651.

[26]

Correa, N. M.; Silber, J. J.; Riter, R. E.; Levinger, N. E. Nonaqueous polar solvents in reverse micelle systems. Chem. Rev. 2012, 112, 4569–4602.

[27]

Groo, A. C.; Matougui, N.; Umerska, A.; Saulnier, P. Reverse micelle-lipid nanocapsules: A novel strategy for drug delivery of the plectasin derivate AP138 antimicrobial peptide. Int. J. Nanomedicine 2018, 13, 7565–7574.

[28]

Eskici, G.; Axelsen, P. H. Amyloid beta peptide folding in reverse micelles. J. Am. Chem. Soc. 2017, 139, 9566–9575.

[29]

Wang, T.; Wang, N.; Song, H.; Xi, X. N.; Wang, J. A.; Hao, A. J.; Li, T. F. Preparation of an anhydrous reverse micelle delivery system to enhance oral bioavailability and anti-diabetic efficacy of berberine. Eur. J. Pharm. Sci. 2011, 44, 127–135.

[30]

Senske, M.; Smith, A. E.; Pielak, G. J. Protein stability in reverse micelles. Angew. Chem., Int. Ed. 2016, 55, 3586–3589.

[31]

Mishra, V.; Nayak, P.; Yadav, N.; Singh, M.; Tambuwala, M. M.; Aljabali, A. A. A. Orally administered self-emulsifying drug delivery system in disease management: Advancement and patents. Expert Opin. Drug Deliv. 2021, 18, 315–332.

[32]

Zhu, Y. J.; Ye, J.; Zhang, Q. Self-emulsifying drug delivery system improve oral bioavailability: Role of excipients and physico-chemical characterization. Pharm. Nanotechnol. 2020, 8, 290–301.

[33]

Bernkop-Schnurch, A.; Jalil, A. Do drug release studies from SEDDS make any sense. J. Control. Release 2018, 271, 55–59.

[34]

Gursoy, R. N.; Benita, S. Self-emulsifying drug delivery systems (SEDDS) for improved oral delivery of lipophilic drugs. Biomed. Pharmacother. 2004, 58, 173–182.

[35]

Lupo, N.; Tkadleckova, V. N.; Tkadlečková, M.; Laffleur, F.; Hetényi, G.; Kubová, K.; Bernkop-Schnürch, A. Self-emulsifying drug delivery systems: In vivo evaluation of their potential for oral vaccination. Acta Biomater. 2019, 94, 425–434.

[36]

Haddadzadegan, S.; Dorkoosh, F.; Bernkop-Schnürch, A. Oral delivery of therapeutic peptides and proteins: Technology landscape of lipid-based nanocarriers. Adv. Drug Deliv. Rev. 2022, 182, 114097.

[37]

Rani, S.; Rana, R.; Saraogi, G. K.; Kumar, V.; Gupta, U. Self-emulsifying oral lipid drug delivery systems: Advances and challenges. AAPS PharmSciTech 2019, 20, 129.

[38]

Xian, M.; Wawrzyniak, P.; Ruckert, B.; Duan, S.; Meng, Y. F.; Sokolowska, M.; Globinska, A.; Zhang, L.; Akdis, M.; Akdis, C. A. Anionic surfactants and commercial detergents decrease tight junction barrier integrity in human keratinocytes. J. Allergy Clin. Immunol. 2016, 138, 890–893.e9.

[39]

Zheng, O.; Zhao, J. X.; Chen, R. T.; Fu, X. M. Aggregation of quaternary ammonium Gemini surfactants C12-s-C12·2Br in n-heptane/n-hexanol solution: Effect of the spacer chains on the critical reverse micelle concentrations. J. Colloid Interface Sci. 2006, 300, 310–313.

[40]

Greenfield, N. J. Using circular dichroism spectra to estimate protein secondary structure. Nat. Protoc. 2006, 1, 2876–2890.

[41]

Andersen, N. H.; Brodsky, Y.; Neidigh, J. W.; Prickett, K. S. Medium-dependence of the secondary structure of exendin-4 and glucagon-like-peptide-1. Bioorg. Med. Chem. 2002, 10, 79–85.

[42]

Meunier, V.; Bourrié, M.; Berger, Y.; Fabre, G. The human intestinal epithelial cell line Caco-2; pharmacological and pharmacokinetic applications. Cell Biol. Toxicol. 1995, 11, 187–194.

[43]

Panse, N.; Gerk, P. M. The Caco-2 Model: Modifications and enhancements to improve efficiency and predictive performance. Int. J. Pharm. 2022, 624, 122004.

[44]

del Carmen Ponce de Leon-Rodriguez, M.; Guyot, J. P.; Laurent-Babot, C. Intestinal in vitro cell culture models and their potential to study the effect of food components on intestinal inflammation. Crit. Rev. Food Sci. Nutr. 2019, 59, 3648–3666.

[45]

Hilgendorf, C.; Spahn-Langguth, H.; Regårdh, C. G.; Lipka, E.; Amidon, G. L.; Langguth, P. Caco-2 versus Caco-2/HT29-MTX Co-cultured cell lines: Permeabilities via diffusion, inside- and outside-directed carrier-mediated transport. J. Pharm. Sci. 2000, 89, 63–75.

[46]

Kwon, M.; Lim, D. Y.; Lee, C. H.; Jeon, J. H.; Choi, M. K.; Song, I. S. Enhanced intestinal absorption and pharmacokinetic modulation of berberine and its metabolites through the inhibition of p-glycoprotein and intestinal metabolism in rats using a berberine mixed micelle formulation. Pharmaceutics 2020, 12, 882.

[47]

Zhang, X.; Dong, W.; Cheng, H. B.; Zhang, M. X.; Kou, Y. Q.; Guan, J.; Liu, Q. Y.; Gao, M. Y.; Wang, X. H.; Mao, S. R. Modulating intestinal mucus barrier for nanoparticles penetration by surfactants. Asian J. Pharm. Sci. 2019, 14, 543–551.

[48]

Cai, Y.; Liu, L.; Xia, M. Q.; Tian, C. L.; Wu, W. Q.; Dong, B. Q.; Chu, X. Q. SEDDS facilitate cinnamaldehyde crossing the mucus barrier: The perspective of mucus and Caco-2/HT29 co-culture models. Int. J. Pharm. 2022, 614, 121461.

[49]

Leonaviciute, G.; Bernkop-Schnürch, A. Self-emulsifying drug delivery systems in oral (poly)peptide drug delivery. Expert Opin. Drug Deliv 2015, 12, 1703–1716.

[50]

Bhattacharjee, S.; Mahon, E.; Harrison, S. M.; McGetrick, J.; Muniyappa, M.; Carrington, S. D.; Brayden, D. J. Nanoparticle passage through porcine jejunal mucus: Microfluidics and rheology. Nanomedicine 2017, 13, 863–873.

[51]

Wang, J. J.; Gou, W. Y.; Kim, D. S.; Strange, C.; Wang, H. J. Clathrin-mediated endocytosis of alpha-1 antitrypsin is essential for its protective function in islet cell survival. Theranostics 2019, 9, 3940–3951.

[52]

Suen, W. L. L.; Chau, Y. Size-dependent internalisation of folate-decorated nanoparticles via the pathways of clathrin and caveolae-mediated endocytosis in ARPE-19 cells. J. Pharm. Pharmacol. 2014, 66, 564–573.

[53]

Koivusalo, M.; Welch, C.; Hayashi, H.; Scott, C. C.; Kim, M.; Alexander, T.; Touret, N.; Hahn, K. M.; Grinstein, S. Amiloride inhibits macropinocytosis by lowering submembranous pH and preventing Rac1 and Cdc42 signaling. J. Cell Biol. 2010, 188, 547–563.

[54]

Zhang, T.; Su, M.; Jiang, X. X.; Xue, Y. Q.; Zhang, J. X.; Zeng, X. Q.; Wu, Z.; Guo, Y. X.; Pan, D. D. Transepithelial transport route and liposome encapsulation of milk-derived ACE-inhibitory peptide Arg-Leu-Ser-Phe-Asn-Pro. J. Agric. Food Chem. 2019, 67, 5544–5551.

[55]

Gupta, M.; Tummala, R.; Ghosh, R. K.; Blumenthal, C.; Philip, K.; Bandyopadhyay, D.; Ventura, H.; Deedwania, P. An update on pharmacotherapies in diabetic dyslipidemia. Prog. Cardiovasc. Dis. 2019, 62, 334–341.

Nano Research
Pages 9768-9780
Cite this article:
Lin M, Wu L, Lu Y, et al. Membrane fusion reverse micelle platforms as potential oral nanocarriers for efficient internalization of free hydrophilic peptides. Nano Research, 2023, 16(7): 9768-9780. https://doi.org/10.1007/s12274-023-5645-7
Topics:

1012

Views

1

Crossref

2

Web of Science

1

Scopus

0

CSCD

Altmetrics

Received: 04 December 2022
Revised: 27 February 2023
Accepted: 07 March 2023
Published: 14 April 2023
© Tsinghua University Press, corrected publication 2023
Return