AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Hollow Zn/Co zeolitic imidazolate framework-implanted composite hydrogel for highly efficient uranium extraction from seawater

Yucheng Song1Xin Ma1Huanhuan Tan1Zhong Liu2Chuntai Liu1Changyu Shen1Peipei Yang1,3( )Songwei Li1( )
National Engineering Research Center for Advanced Polymer Processing Technology, Key Laboratory of Materials Processing and Mold (Ministry of Education), Zhengzhou University, Zhengzhou 450002, China
Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Provincial Key Laboratory of Resources and Chemistry of Salt Lakes, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810008, China
Henan Tuoren Medical Device Co., Ltd., Weiyuan Industrial Park, Changyuan 453400, China
Show Author Information

Graphical Abstract

Hollow Zn/Co zeolitic imidazolate framework (H-ZIF) crystals were modified by chelating and covalent cross-linking polyacrylamide/sodium alginate (PAM/SA) hydrogel to prepare PAM/SA/H-ZIF for high efficiency uranium extraction from seawater. PAM/SA/H-ZIF adsorbent has good uranium(VI) (U(VI)) adsorption performance and long-term stability.

Abstract

Efficient capture of uranium(VI) (U(VI)) from seawater is of great significance to the sustainable development of nuclear energy and environmental protection, which is also a serious challenge at present. In this study, hollow Zn/Co zeolitic imidazolate framework (H-ZIF) was decorated on polyacrylamide/sodium alginate (PAM/SA) hydrogel by chelating and covalently crosslinking, and a new type of PAM/SA/H-ZIF hydrogel was synthesized. The combination of PAM/SA and H-ZIF gives PAM/SA/H-ZIF hydrogel excellent mechanical properties, good stability, and abundant surface functional groups, which is beneficial to improving the adsorption properties. The extraction amount of U(VI) by PAM/SA/H-ZIF is 171.14 mg·g−1 at C0 = 99.52 mg·L−1 and pH = 5.0. The adsorption equilibrium is reached in 120 min and the adsorption process fits well with Langmuir isotherm model and pseudo-second-order rate equation. The PAM/SA/H-ZIF also showed good recyclability and stability after 10 cycles of adsorption–desorption. More importantly, the rate of uranium adsorption is 0.196 mg·g−1·day−1 after 30 days, which implies that the PAM/SA/H-ZIF could serve as a potential adsorbent for the development of uranium capture from seawater.

Electronic Supplementary Material

Download File(s)
12274_2023_5647_MOESM1_ESM.pdf (1.6 MB)

References

[1]

Liu, T. Q.; Li, Z.; Zhang, X.; Tan, H. X.; Chen, Z. Y.; Wu, J. S.; Chen, J.; Qiu, H. D. Metal-organic framework-intercalated graphene oxide membranes for selective separation of uranium. Anal. Chem. 2021, 93, 16175–16183.

[2]

Qin, X. D.; Yang, W. T.; Yang, W. K.; Ma, Y.; Li, M. L.; Chen, C.; Pan, Q. H. Covalent modification of ZIF-90 for uranium adsorption from seawater. Microporous Mesoporous Mater. 2021, 323, 111231.

[3]

Wang, H.; Xu, T. H.; Zheng, B. H.; Cao, M.; Gao, F.; Zhou, G. B.; Ma, C.; Dang, J.; Yao, W. K.; Wu, K. C. et al. Cuttlefish ink loaded polyamidoxime adsorbent with excellent photothermal conversion and antibacterial activity for highly efficient uranium capture from natural seawater. J. Hazard. Mater. 2022, 433, 128789.

[4]

Li, Z. Y.; Zhu, R. M.; Zhang, P. L.; Yang, M.; Zhao, R. Q.; Wang, Y. L.; Dai, X.; Liu, W. Functionalized polyarylether-based COFs for rapid and selective extraction of uranium from aqueous solution. Chem. Eng. J. 2022, 434, 134623.

[5]

Cui, W. R.; Li, F. F.; Xu, R. H.; Zhang, C. R.; Chen, X. R.; Yan, R. H.; Liang, R. P.; Qiu, J. D. Regenerable covalent organic frameworks for photo-enhanced uranium adsorption from seawater. Angew. Chem., Int. Ed. 2020, 59, 17684–17690.

[6]

Song, Y. T.; Li, A.; Li, P. J.; He, L. W.; Xu, D. Y.; Wu, F. Q.; Zhai, F. W.; Wu, Y. T.; Hu, K.; Wang, S. A. et al. Unassisted uranyl photoreduction and separation in a donor–acceptor covalent organic framework. Chem. Mater. 2022, 34, 2771–2778.

[7]

Zhang, Z.; Liu, M. X.; Ibrahim, M. M.; Wu, H. K.; Wu, Y.; Li, Y.; Mersal, G. A. M.; El Azab, I. H.; El-Bahy, S. M.; Huang, M. N. et al. Flexible polystyrene/graphene composites with epsilon-near-zero properties. Adv. Compos. Hybrid Mater. 2022, 5, 1054–1066.

[8]

Xie, P. T.; Shi, Z. C.; Feng, M.; Sun, K.; Liu, Y.; Yan, K. L.; Liu, C. Z.; Moussa, T. A. A.; Huang, M. N.; Meng, S. W. et al. Recent advances in radio-frequency negative dielectric metamaterials by designing heterogeneous composites. Adv. Compos. Hybrid Mater. 2022, 5, 679–695.

[9]

Zheng, T.; Yang, Z. X.; Gui, D. X.; Liu, Z. Y.; Wang, X. X.; Dai, X.; Liu, S. T.; Zhang, L. J.; Gao, Y.; Chen, L. H. et al. Overcoming the crystallization and designability issues in the ultrastable zirconium phosphonate framework system. Nat. Commun. 2017, 8, 15369.

[10]

Xu, Y. C.; Zhang, H. S.; Liu, Q.; Liu, J. Y.; Chen, R. R.; Yu, J.; Zhu, J. H.; Li, R. M.; Wang, J. Surface hybridization of π-conjugate structure cyclized polyacrylonitrile and radial microsphere shaped TiO2 for reducing U(VI) to U(IV). J. Hazard. Mater. 2021, 416, 125812.

[11]

Yan, B. J.; Ma, C. X.; Gao, J. X.; Yuan, Y. H.; Wang, N. An ion-crosslinked supramolecular hydrogel for ultrahigh and fast uranium recovery from seawater. Adv. Mater. 2020, 32, 1906615.

[12]

Liu, M. X.; Wu, H. K.; Wu, Y.; Xie, P. T.; Pashameah, R. A.; Abo-Dief, H. M.; El-Bahy, S. M.; Wei, Y. L.; Li, G. X.; Li, W. T. et al. The weakly negative permittivity with low-frequency-dispersion behavior in percolative carbon nanotubes/epoxy nanocomposites at radio-frequency range. Adv. Compos. Hybrid Mater. 2022, 5, 2021–2030.

[13]

Mei, D. C.; Li, H.; Liu, L. J.; Jiang, L. C.; Zhang, C. H.; Wu, X. R.; Dong, H. X.; Ma, F. Q. Efficient uranium adsorbent with antimicrobial function: Oxime functionalized ZIF-90. Chem. Eng. J. 2021, 425, 130468.

[14]

Li, H.; Zhai, F. W.; Gui, D. X.; Wang, X. X.; Wu, C. F.; Zhang, D.; Dai, X.; Deng, H.; Su, X. T.; Diwu, J. et al. Powerful uranium extraction strategy with combined ligand complexation and photocatalytic reduction by postsynthetically modified photoactive metal-organic frameworks. Appl. Catal. B: Environ. 2019, 254, 47–54.

[15]

Li, W. T.; Liu, Y. Y.; Bai, Y.; Wang, J.; Pang, H. Anchoring ZIF-67 particles on amidoximerized polyacrylonitrile fibers for radionuclide sequestration in wastewater and seawater. J. Hazard. Mater. 2020, 395, 122692.

[16]

Zhang, H. L.; Liu, W.; Li, A.; Zhang, D.; Li, X. Y.; Zhai, F. W.; Chen, L. H.; Chen, L.; Wang, Y. L.; Wang, S. A. Three mechanisms in one material: Uranium capture by a polyoxometalate-organic framework through combined complexation, chemical reduction, and photocatalytic reduction. Angew. Chem., Int. Ed. 2019, 58, 16110–16114.

[17]

Yang, J.; Zhang, F. J.; Lu, H. Y.; Hong, X.; Jiang, H. L.; Wu, Y. E.; Li, Y. D. Hollow Zn/Co ZIF particles derived from core–shell ZIF-67@ZIF-8 as selective catalyst for the semi-hydrogenation of acetylene. Angew. Chem., Int. Ed. 2015, 54, 10889–10893.

[18]

Li, Y. P.; Xiang, P.; Chen, H. T.; Zhou, Y. Adsorption performance of one- and two-component anionic dyes using core–shell ZIF-8@ZIF-67. J. Solid State Chem. 2022, 315, 123538.

[19]

Shah, H. U. R.; Ahmad, K.; Naseem, H. A.; Parveen, S.; Ashfaq, M.; Rauf, A.; Aziz, T. Water stable graphene oxide metal-organic frameworks composite (ZIF-67@GO) for efficient removal of malachite green from water. Food Chem. Toxicol. 2021, 154, 112312.

[20]

Liu, Y. F.; Lin, D. Y.; Yang, W. T.; An, X. Y.; Sun, A. H.; Fan, X. L.; Pan, Q. H. In situ modification of ZIF-67 with multi-sulfonated dyes for great enhanced methylene blue adsorption via synergistic effect. Microporous Mesoporous Mater 2020, 303, 110304.

[21]

Mohammed, B. B.; Lgaz, H.; Alrashdi, A. A.; Yamni, K.; Tijani, N.; Dehmani, Y.; El Hamdani, H.; Chung, I. M. Insights into methyl orange adsorption behavior on a cadmium zeolitic-imidazolate framework Cd-ZIF-8: A joint experimental and theoretical study. Arab. J. Chem. 2021, 14, 102897.

[22]

Guo, X. J.; Yang, H. C.; Wang, J. Ion cross-linking assisted synthesis of ZIF-8/chitosan/melamine sponge with anti-biofouling activity for enhanced uranium recovery. Inorg. Chem. Front. 2022, 9, 155–164.

[23]

Zhou, Q.; Jin, B.; Zhao, P.; Chu, S. J.; Peng, R. F. rGO/CNQDs/ZIF-67 composite aerogel for efficient extraction of uranium in wastewater. Chem. Eng. J. 2021, 419, 129622.

[24]

Ahmad, M.; Chen, J. J.; Yang, K.; Shah, T.; Naik, M. U. D.; Zhang, Q. Y.; Zhang, B. L. Preparation of amidoxime modified porous organic polymer flowers for selective uranium recovery from seawater. Chem. Eng. J. 2021, 418, 129370.

[25]

Wen, R.; Li, Y.; Zhang, M. C.; Guo, X. H.; Li, X.; Li, X. F.; Han, J.; Hu, S.; Tan, W.; Ma, L. J. et al. Graphene-synergized 2D covalent organic framework for adsorption: A mutual promotion strategy to achieve stabilization and functionalization simultaneously. J. Hazard. Mater. 2018, 358, 273–285.

[26]

Song, Y. C.; Li, H.; Shan, T. H.; Yang, P. P.; Li, S. W.; Liu, Z.; Liu, C. T.; Shen, C. Y. MOF-implanted poly (acrylamide-co-acrylic acid)/chitosan organic hydrogel for uranium extraction from seawater. Carbohydr. Polym. 2023, 302, 120377.

[27]

Cheng, K. C.; Zou, L.; Chang, B. B.; Liu, X.; Shi, H. H.; Li, T. L.; Yang, Q. Q.; Guo, Z. H.; Liu, C. T.; Shen, C. Y. Mechanically robust and conductive poly(acrylamide) nanocomposite hydrogel by the synergistic effect of vinyl hybrid silica nanoparticle and polypyrrole for human motion sensing. Adv. Compos. Hybrid Mater. 2022, 5, 2834–2846.

[28]

Liu, X. T.; Wu, Z. J.; Jiang, D. W.; Guo, N.; Wang, Y.; Ding, T.; Weng, L. A highly stretchable, sensing durability, transparent, and environmentally stable ion conducting hydrogel strain sensor built by interpenetrating Ca2+-SA and glycerol-PVA double physically cross-linked networks. Adv. Compos. Hybrid Mater. 2022, 5, 1712–1729.

[29]

Wu, Y. F.; Chen, E. F.; Weng, X. D.; He, Z. F.; Chang, G.; Pan, X. C.; Liu, J. C.; Huang, K.; Huang, K.; Lei, M. Conductive polyvinyl alcohol/silver nanoparticles hydrogel sensor with large draw ratio, high sensitivity, and high stability for human behavior monitoring. Eng. Sci. 2022, 18, 113–120.

[30]

Bakadia, B. M.; Zhong, A. M.; Li, X. H.; Boni, B. O. O.; Ahmed, A. A. Q.; Souho, T.; Zheng, R. Z.; Shi, Z. J.; Shi, D. W.; Lamboni, L. et al. Biodegradable and injectable poly(vinyl alcohol) microspheres in silk sericin-based hydrogel for the controlled release of antimicrobials: Application to deep full-thickness burn wound healing. Adv. Compos. Hybrid Mater. 2022, 5, 2847–2872.

[31]

Wang, Z. F.; Li, R. X.; Zhang, J. G. On-demand drug delivery of triptolide and celastrol by poly(lactic-co-glycolic acid) nanoparticle/triglycerol monostearate-18 hydrogel composite for rheumatoid arthritis treatment. Adv. Compos. Hybrid Mater. 2022, 5, 2921–2935.

[32]

Zhu, J. H.; Zhao, L. N.; Song, D. L.; Yu, J.; Liu, Q.; Liu, J. Y.; Chen, R. R.; Sun, G. H.; Wang, J. Functionalized GO-doped double network antibacterial hydrogels for efficient uranium extraction from seawater. Desalination 2022, 540, 115993.

[33]

Chai, J. J.; Hu, Q.; Qiu, B. Conductive polyaniline improves Cr(VI) bio-reduction by anaerobic granular sludge. Adv. Compos. Hybrid Mater. 2021, 4, 1137–1145.

[34]

Wang, T. R.; Wusigale; Kuttappan, D.; Amalaradjou, M. A.; Luo, Y. G.; Luo, Y. C. Polydopamine-coated chitosan hydrogel beads for synthesis and immobilization of silver nanoparticles to simultaneously enhance antimicrobial activity and adsorption kinetics. Adv. Compos. Hybrid Mater. 2021, 4, 696–706.

[35]

Liu, J. C.; Chen, E. F.; Wu, Y. F.; Yang, H. J.; Huang, K.; Chang, G.; Pan, X. C.; Huang, K.; He, Z. F.; Lei, M. Silver nanosheets doped polyvinyl alcohol hydrogel piezoresistive bifunctional sensor with a wide range and high resolution for human motion detection. Adv. Compos. Hybrid Mater. 2022, 5, 1196–1205.

[36]

Kong, D. S.; El-Bahy, Z. M.; Algadi, H.; Li, T.; El-Bahy, S. M.; Nassan, M. A.; Li, J. R.; Faheim, A. A.; Li, A.; Xu, C. X. et al. Highly sensitive strain sensors with wide operation range from strong MXene-composited polyvinyl alcohol/sodium carboxymethylcellulose double network hydrogel. Adv. Compos. Hybrid Mater. 2022, 5, 1976–1987.

[37]

Zheng, Q. F.; Zhao, L. Y.; Wang, J.; Wang, S.; Liu, Y. X.; Liu, X. F. High-strength and high-toughness sodium alginate/polyacrylamide double physically crosslinked network hydrogel with superior self-healing and self-recovery properties prepared by a one-pot method. Colloids Surf. A: Physicochem. Eng. Asp. 2020, 589, 124402.

[38]

Zhang, W.; Deng, Q.; He, Q. L.; Song, J. Y.; Zhang, S. L.; Wang, H. Y.; Zhou, J. P.; Zhang, H. N. A facile synthesis of core–shell/bead-like poly(vinyl alcohol)/alginate@PAM with good adsorption capacity, high adaptability, and stability towards Cu(II) removal. Chem. Eng. J. 2018, 351, 462–472.

[39]

Sharma, S. K.; Sudarshan, K.; Yadav, A. K.; Jha, S. N.; Bhattacharyya, D.; Pujari, P. K. Investigation of compression-induced deformations in local structure and pore architecture of ZIF-8 using FTIR, X-ray absorption, and positron annihilation spectroscopy. J. Phys. Chem. C 2019, 123, 22273–22280.

[40]

Sharma, S. K.; Utpalla, P.; Bahadur, J.; Goutam, U. K.; Pujari, P. K. Micrometer scale pore-interconnectivity in nanoporous ZIF-8 films with Zn enriched surface terminations. Microporous Mesoporous Mater. 2020, 307, 110519.

[41]

Tang, J.; Salunkhe, R. R.; Liu, J.; Torad, N. L.; Imura, M.; Furukawa, S.; Yamauchi, Y. Thermal conversion of core–shell metal-organic frameworks: A new method for selectively functionalized nanoporous hybrid carbon. J. Am. Chem. Soc. 2015, 137, 1572–1580.

[42]

Li, C. L.; Guo, H.; Wu, N.; Hao, Y. R.; Cao, Y. J.; Chen, Y.; Zhang, H.; Yang, F.; Yang, W. Nickel sulfide and cobalt-containing carbon nanoparticles formed from ZIF-67@ZIF-8 as advanced electrode materials for high-performance asymmetric supercapacitors. Colloids Surf. A: Physicochem. Eng. Asp. 2022, 648, 129241.

[43]

Mor, J.; Sharma, S. K.; Utpalla, P.; Bahadur, J.; Prakash, J.; Kumar, A.; Pujari, P. K. Pore architecture evolution and OER catalytic activity of hollow Co/Zn zeolitic imidazolate frameworks. Microporous Mesoporous Mater. 2022, 335, 111814.

[44]

Li, Z. Y.; Guo, Z. W.; Zhang, T. Y.; Li, Q.; Chen, J.; Ji, W. X.; Liu, C.; Wei, Y. Fabrication of in situ ZIF-67 grown on alginate hydrogels and its application for enhancing Cu(II) adsorption from aqueous solutions. Colloids Surf. B: Biointerfaces 2021, 207, 112036.

[45]

Yin, H.; Zhong, W. T.; Yin, M.; Kang, C. J.; Shi, L. L.; Tang, H. L.; Yang, C. L.; Althakafy, J. T.; Huang, M. N.; Alanazi, A. K. et al. Carboxyl-functionalized poly(arylene ether nitrile)-based rare earth coordination polymer nanofibrous membrane for highly sensitive and selective sensing of Fe3+ ions. Adv. Compos. Hybrid Mater. 2022, 5, 2031–2041.

[46]

Li, J. Y.; Guo, M.; Wang, Y. P.; Ye, B. H.; Chen, Y. W.; Yang, X. J. Preparation of biological sustained-release nanocapsules and explore on algae-killing properties. J. Adv. Res. 2021, 31, 87–96.

[47]

Zhao, D. W.; Feng, M.; Zhang, L.; He, B.; Chen, X. Y.; Sun, J. Facile synthesis of self-healing and layered sodium alginate/polyacrylamide hydrogel promoted by dynamic hydrogen bond. Carbohydr. Polym. 2021, 256, 117580.

[48]

Han, M. Z.; Tan, Y. Q.; Meng, A. X.; Xiong, X. T.; Wang, Y. Y.; Lv, H. J. Preparation of chemical-physical hybrid crosslinking double network gel composite incorporated SBS modified asphalt. Int. J. Pavement Eng. 2022, 1–15.

[49]

Diana, M. I.; Selvasekarapandian, S.; Selvin, P. C.; Krishna, M. V. A physicochemical elucidation of sodium perchlorate incorporated alginate biopolymer: Toward all-solid-state sodium-ion battery. J. Mater. Sci. 2022, 57, 8211–8224.

[50]

Wang, Y. L.; Li, Z. H.; Tang, C.; Ren, H. X.; Zhang, Q.; Xue, M.; Xiong, J.; Wang, D. B.; Yu, Q.; He, Z. Y. et al. Few-layered mesoporous graphene for high-performance toluene adsorption and regeneration. Environ. Sci.: Nano 2019, 6, 3113–3122.

[51]

Zhu, J. H.; Liu, Q.; Li, Z. S.; Liu, J. Y.; Zhang, H. S.; Li, R. M.; Wang, J. Efficient extraction of uranium from aqueous solution using an amino-functionalized magnetic titanate nanotubes. J. Hazard. Mater. 2018, 353, 9–17.

[52]

Liang, Y.; Xia, M.; Yu, Q. H.; Li, Y. P.; Sui, Z. Y.; Yuan, Y. H.; Hu, X. M.; Chen, Q.; Wang, N. Guanidinium-based ionic covalent organic frameworks for capture of uranyl tricarbonate. Adv. Compos. Hybrid Mater. 2022, 5, 184–194.

[53]

Si, Y. Y.; Li, J. N.; Cui, B.; Tang, D. J.; Yang, L.; Murugadoss, V.; Maganti, S.; Huang, M. N.; Guo, Z. H. Janus phenol-formaldehyde resin and periodic mesoporous organic silica nanoadsorbent for the removal of heavy metal ions and organic dyes from polluted water. Adv. Compos. Hybrid Mater. 2022, 5, 1180–1195.

[54]

Guo, L.; Zhang, Y. F.; Zheng, J. J.; Shang, L. Q.; Shi, Y. J.; Wu, Q.; Liu, X. X.; Wang, Y. M.; Shi, L. Q.; Shao, Q. Synthesis and characterization of ZnNiCr-layered double hydroxides with high adsorption activities for Cr(VI). Adv. Compos. Hybrid Mater. 2021, 4, 819–829.

[55]

Yang, P. P.; Zhang, H. S.; Liu, Q.; Liu, J. Y.; Chen, R. R.; Yu, J.; Hou, J. D.; Bai, X. F.; Wang, J. Nano-sized architectural design of multi-activity graphene oxide (GO) by chemical post-decoration for efficient uranium(VI) extraction. J. Hazard. Mater. 2019, 375, 320–329.

[56]

Zhou, S.; Xie, Y. X.; Zhu, F. Y.; Gao, Y. Y.; Liu, Y. J.; Tang, Z. P.; Duan, Y. Amidoxime modified chitosan/graphene oxide composite for efficient adsorption of U(VI) from aqueous solutions. J. Environ. Chem. Eng. 2021, 9, 106363.

[57]

Yin, C. Z.; Wang, C.; Hu, Q. Selective removal of As(V) from wastewater with high efficiency by glycine-modified Fe/Zn-layered double hydroxides. Adv. Compos. Hybrid Mater. 2021, 4, 360–370.

[58]

Manos, M. J.; Kanatzidis, M. G. Layered metal sulfides capture uranium from seawater. J. Am. Chem. Soc. 2012, 134, 16441–16446.

[59]

Xiong, X. H.; Yu, Z. W.; Gong, L. L.; Tao, Y.; Gao, Z.; Wang, L.; Yin, W. H.; Yang, L. X.; Luo, F. Ammoniating covalent organic framework (COF) for high-performance and selective extraction of toxic and radioactive uranium ions. Adv. Sci. (Weinh.) 2019, 6, 1900547.

[60]

Liu, L. J.; Yang, W. T.; Gu, D. X.; Zhao, X. J.; Pan, Q. H. In situ preparation of chitosan/ZIF-8 composite beads for highly efficient removal of U(VI). Front. Chem. 2019, 7, 607.

[61]

Wu, F. C.; Pu, N.; Ye, G.; Sun, T. X.; Wang, Z.; Song, Y.; Wang, W. Q.; Huo, X. M.; Lu, Y. X.; Chen, J. Performance and mechanism of uranium adsorption from seawater to poly(dopamine)-inspired sorbents. Environ. Sci. Technol. 2017, 51, 4606–4614.

[62]

Su, S. Z.; Che, R.; Liu, Q.; Liu, J. Y.; Zhang, H. S.; Li, R. M.; Jing, X. Y.; Wang, J. Zeolitic imidazolate framework-67: A promising candidate for recovery of uranium(VI) from seawater. Colloids Surf. A: Physicochem. Eng. Asp. 2018, 547, 73–80.

[63]

Wang, D.; Song, J. N.; Lin, S.; Wen, J.; Ma, C. X.; Yuan, Y. H.; Lei, M.; Wang, X. L.; Wang, N.; Wu, H. A marine-inspired hybrid sponge for highly efficient uranium extraction from seawater. Adv. Funct. Mater. 2019, 29, 1901009.

[64]

Abney, C. W.; Mayes, R. T.; Saito, T.; Dai, S. Materials for the recovery of uranium from seawater. Chem. Rev. 2017, 117, 13935–14013.

[65]

He, N. N.; Li, H.; Li, L. Y.; Cheng, C.; Lu, X. R.; Wen, J.; Wang, X. L. Polyguanidine-modified adsorbent to enhance marine applicability for uranium recovery from seawater. J. Hazard. Mater. 2021, 416, 126192.

[66]

Mei, P. P.; Wu, R.; Shi, S.; Li, B. C.; Ma, C. X.; Hu, B. W.; Yuan, Y. H.; Wang, H.; Liu, T.; Wang, N. Conjugating hyaluronic acid with porous biomass to construct anti-adhesive sponges for rapid uranium extraction from seawater. Chem. Eng. J. 2021, 420, 130382.

[67]

Kuo, L. J.; Pan, H. B.; Wai, C. M.; Byers, M. F.; Schneider, E.; Strivens, J. E.; Janke, C. J.; Das, S.; Mayes, R. T.; Wood, J. R. et al. Investigations into the reusability of amidoxime-based polymeric adsorbents for seawater uranium extraction. Ind. Eng. Chem. Res. 2017, 56, 11603–11611.

[68]

Li, H.; He, N. N.; Cheng, C.; Dong, H.; Wen, J.; Wang, X. L. Antimicrobial polymer contained adsorbent: A promising candidate with remarkable anti-biofouling ability and durability for enhanced uranium extraction from seawater. Chem. Eng. J. 2020, 388, 124273.

Nano Research
Pages 10451-10461
Cite this article:
Song Y, Ma X, Tan H, et al. Hollow Zn/Co zeolitic imidazolate framework-implanted composite hydrogel for highly efficient uranium extraction from seawater. Nano Research, 2023, 16(7): 10451-10461. https://doi.org/10.1007/s12274-023-5647-5
Topics:

1300

Views

14

Crossref

14

Web of Science

16

Scopus

0

CSCD

Altmetrics

Received: 16 December 2022
Revised: 26 February 2023
Accepted: 07 March 2023
Published: 20 April 2023
© Tsinghua University Press 2023
Return