AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Papillary fibroblast-recruiting injectable self-healing multifunctional hydrogels for wound regeneration

Yueyue Li1,§Weifeng Zhong2,§Junjie Wu1Yuan Jia1Zhonghua Chen1Kaiwen Zhang1Danyang Guo1Yifei Fu1Mengnan Chen1Weiwei Chen1Fan Tian1Xia Li1Hongji Zhang2( )Xiaojin Zhou1( )Feng-Lai Yuan1( )
Institute of Integrated Chinese and Western Medicine, Affiliated Hospital of Jiangnan University, Wuxi 214000, China
The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214000, China

§ Yueyue Li and Weifeng Zhong contributed equally to this work.

Show Author Information

Graphical Abstract

Recruitment and enhancement of endogenous stem/progenitor cells for more efficient tissue repair has emerged as a promising new approach in the field of regenerative medicine. Here, we loaded antibody Lrig1+ and insulin-like growth factor 1 (IGF1) in a newly synthesized multifunctional hydrogel to recruit Lrig1+ papillary fibroblasts in wound tissue to accelerate wound healing and skin regeneration.

Abstract

The recruitment of key cells to regeneration sites is a promising strategy to promote functional wound healing. Dermal fibroblasts exhibit a heterogeneous population of cells during homeostasis and in response to injury. Papillary fibroblasts play central regulatory roles in the regeneration of skin appendages during wound healing. Inspired by the phenomenon where bait for grass carp can attract grouped grass carps to a fishing spot soon, “Grass Carp Fishing” multifunctional hydrogels, that is, codelivery of an antibody of leucine-rich repeats and immunoglobulin-like domains 1 (Lrig1) on the surface of papillary fibroblasts and insulin-like growth factor 1 (IGF1) with recruitment function, can recruit papillary fibroblasts. In the experiments, carboxymethyl chitosan showed positive effects in promoting cell proliferation and neovascularization, while dopamine-grafted gelatin was effective in stabilizing the structure and prolonging the degradation time. The sustained release of Lrig1 antibodies and IGF1 from injectable self-healing multifunctional hydrogels persistently accelerated the migration and proliferation of Lrig1+ fibroblasts. The in vivo results from a full-thickness cutaneous wound model showed that injectable self-healing multifunctional hydrogel accelerated wound healing and skin regeneration through the recruitment of Lrig1+ papillary fibroblasts in wound tissue. Our findings reveal an injectable self-healing multifunctional hydrogel for regeneration, a promising approach to promoting skin wound healing.

Electronic Supplementary Material

Download File(s)
12274_2023_5648_MOESM1_ESM.pdf (734.8 KB)

References

[1]

Theocharidis, G.; Rahmani, S.; Lee, S.; Li, Z. Q.; Lobao, A.; Kounas, K.; Katopodi, X. L.; Wang, P.; Moon, S.; Vlachos, I. S. et al. Murine macrophages or their secretome delivered in alginate dressings enhance impaired wound healing in diabetic mice. Biomaterials 2022, 288, 121692.

[2]

Kharaziha, M.; Baidya, A.; Annabi, N. Rational design of immunomodulatory hydrogels for chronic wound healing. Adv. Mater. 2021, 33, 2100176.

[3]

Gong, C. X.; Guan, W.; Liu, X. M.; Zheng, Y. F.; Li, Z. Y.; Zhang, Y.; Zhu, S. L.; Jiang, H.; Cui, Z. D.; Wu, S. L. Biomimetic bacteriophage-like particles formed from probiotic extracts and NO donors for eradicating multidrug-resistant Staphylococcus aureus. Adv. Mater. 2022, 34, 2206134.

[4]

Berthiaume, F.; Hsia, H. C. Regenerative approaches for chronic wounds. Annu. Rev. Biomed. Eng. 2022, 24, 61–83.

[5]

Mao, A. S.; Mooney, D. J. Regenerative medicine: Current therapies and future directions. Proc. Natl. Acad. Sci. USA 2015, 112, 14452–14459.

[6]

Kohara, H.; Tajima, S.; Yamamoto, M.; Tabata, Y. Angiogenesis induced by controlled release of neuropeptide substance P. Biomaterials 2010, 31, 8617–8625.

[7]

Bacakova, L.; Zarubova, J.; Travnickova, M.; Musilkova, J.; Pajorova, J.; Slepicka, P.; Kasalkova, N. S.; Svorcik, V.; Kolska, Z.; Motarjemi, H. et al. Stem cells: Their source, potency and use in regenerative therapies with focus on adipose-derived stem cells—a review. Biotechnol. Adv. 2018, 36, 1111–1126.

[8]

Pacelli, S.; Basu, S.; Whitlow, J.; Chakravarti, A.; Acosta, F.; Varshney, A.; Modaresi, S.; Berkland, C.; Paul, A. Strategies to develop endogenous stem cell-recruiting bioactive materials for tissue repair and regeneration. Adv. Drug Deliv. Rev. 2017, 120, 50–70.

[9]

Xia, Y.; Chen, J. S.; Ding, J.; Zhang, J. Q.; Chen, H. IGF1- and BM-MSC-incorporating collagen-chitosan scaffolds promote wound healing and hair follicle regeneration. Am. J. Transl. Res. 2020, 12, 6264–6276.

[10]

Harper, R. A.; Grove, G. Human skin fibroblasts derived from papillary and reticular dermis: Differences in growth potential in vitro. Science 1979, 204, 526–527.

[11]

Talbott, H. E.; Mascharak, S.; Griffin, M.; Wan, D. C.; Longaker, M. T. Wound healing, fibroblast heterogeneity, and fibrosis. Cell Stem Cell 2022, 29, 1161–1180.

[12]

Plikus, M. V.; Wang, X. J.; Sinha, S.; Forte, E.; Thompson, S. M.; Herzog, E. L.; Driskell, R. R.; Rosenthal, N.; Biernaskie, J.; Horsley, V. Fibroblasts: Origins, definitions, and functions in health and disease. Cell 2021, 184, 3852–3872.

[13]

Yamazaki, T.; Nalbandian, A.; Uchida, Y.; Li, W. L.; Arnold, T. D.; Kubota, Y.; Yamamoto, S.; Ema, M.; Mukouyama, Y. S. Tissue myeloid progenitors differentiate into pericytes through TGF-β signaling in developing skin vasculature. Cell Rep. 2017, 18, 2991–3004.

[14]

Ganier, C.; Rognoni, E.; Goss, G.; Lynch, M.; Watt, F. M. Fibroblast heterogeneity in healthy and wounded skin. Cold Spring Harb. Perspect. Biol. 2022, 14, a041238.

[15]

Liang, Y. Q.; Xu, H. R.; Li, Z. L.; Zhangji, A. D.; Guo, B. L. Bioinspired injectable self-healing hydrogel sealant with fault-tolerant and repeated thermo-responsive adhesion for sutureless post-wound-closure and wound healing. Nano-Micro Lett. 2022, 14, 185.

[16]

Zhang, X. Z.; Jiang, W.; Xie, C.; Wu, X. Y.; Ren, Q.; Wang, F.; Shen, X. L.; Hong, Y.; Wu, H. W.; Liao, Y. G. et al. Msx1+ stem cells recruited by bioactive tissue engineering graft for bone regeneration. Nat. Commun. 2022, 13, 5211.

[17]

Bertsch, P.; Diba, M.; Mooney, D. J.; Leeuwenburgh, S. C. G. Self-healing injectable hydrogels for tissue regeneration. Chem. Rev. 2023, 123, 834–873.

[18]

Huang, X.; Zhang, Y. Q.; Zhang, X. M.; Xu, L.; Chen, X.; Wei, S. C. Influence of radiation crosslinked carboxymethyl-chitosan/gelatin hydrogel on cutaneous wound healing. Mater. Sci. Eng. C 2013, 33, 4816–4824.

[19]

Zhang, Y. L.; Yang, B.; Zhang, X. Y.; Xu, L. X.; Tao, L.; Li, S. X.; Wei, Y. A magnetic self-healing hydrogel. Chem. Commun. 2012, 48, 9305–9307.

[20]

Moeini, A.; Pedram, P.; Makvandi, P.; Malinconico, M.; Gomez d'Ayala, G. Wound healing and antimicrobial effect of active secondary metabolites in chitosan-based wound dressings: A review. Carbohydr. Polym. 2020, 233, 115839.

[21]

Li, Y. N.; Xu, T. Z.; Tu, Z. L.; Dai, W. T.; Xue, Y. M.; Tang, C. X.; Gao, W. Y.; Mao, C.; Lei, B.; Lin, C. Bioactive antibacterial silica-based nanocomposites hydrogel scaffolds with high angiogenesis for promoting diabetic wound healing and skin repair. Theranostics 2020, 10, 4929–4943.

[22]

Zhang, Y. L.; Tao, L.; Li, S. X.; Wei, Y. Synthesis of multiresponsive and dynamic chitosan-based hydrogels for controlled release of bioactive molecules. Biomacromolecules 2011, 12, 2894–2901.

[23]

Zhong, W. B.; Xiong, Y.; Wang, X. T.; Yu, T.; Zhou, C. R. Synthesis and characterization of multifunctional organic-inorganic composite hydrogel formed with tissue-adhesive property and inhibiting infection. Mater. Sci. Eng. C 2021, 118, 111532.

[24]

Qu, J.; Zhao, X.; Liang, Y. P.; Zhang, T. L.; Ma, P. X.; Guo, B. L. Antibacterial adhesive injectable hydrogels with rapid self-healing, extensibility and compressibility as wound dressing for joints skin wound healing. Biomaterials 2018, 183, 185–199.

[25]

Kong, B.; Liu, R.; Cheng, Y.; Cai, X. D.; Liu, J. Y. Natural biopolymers derived hydrogels with injectable, self-healing, and tissue adhesive abilities for wound healing. Nano Res. 2023, 16, 2798–2807.

[26]

Han, K.; Bai, Q.; Wu, W. D.; Sun, N.; Cui, N.; Lu, T. L. Gelatin-based adhesive hydrogel with self-healing, hemostasis, and electrical conductivity. Int. J. Biol. Macromol. 2021, 183, 2142–2151.

[27]

Zhang, Y.; Wu, H. X.; Li, P. P.; Liu, W. X.; Zhang, Y. L.; Dong, A. Dual-light-triggered in situ structure and function regulation of injectable hydrogels for high-efficient anti-infective wound therapy. Adv. Healthc. Mater. 2022, 11, 2101722.

[28]

Fan, C. J.; Fu, J. Y.; Zhu, W. Z.; Wang, D. A. A mussel-inspired double-crosslinked tissue adhesive intended for internal medical use. Acta Biomater. 2016, 33, 51–63.

[29]

Neto, A. I.; Cibrão, A. C.; Correia, C. R.; Carvalho, R. R.; Luz, G. M.; Ferrer, G. G.; Botelho, G.; Picart, C.; Alves, N. M.; Mano, J. F. Nanostructured polymeric coatings based on chitosan and dopamine-modified hyaluronic acid for biomedical applications. Small 2014, 10, 2459–2469.

[30]

Cui, R. H.; Chen, F. P.; Zhao, Y. J.; Huang, W. J.; Liu, C. S. A novel injectable starch-based tissue adhesive for hemostasis. J. Mater. Chem. B 2020, 8, 8282–8293.

[31]

Qiu, H.; Pu, F.; Liu, Z. W.; Liu, X. M.; Dong, K.; Liu, C. Q.; Ren, J. S.; Qu, X. G. Hydrogel-based artificial enzyme for combating bacteria and accelerating wound healing. Nano Res. 2020, 13, 496–502.

[32]

Li, X. M.; Liu, Z. W.; Liang, Y. R.; Wang, L. M.; Liu, Y. D. Chitosan-based double cross-linked ionic hydrogels as a strain and pressure sensor with broad strain-range and high sensitivity. J. Mater. Chem. B 2022, 10, 3434–3443.

[33]

Deng, M. Y.; Zhang, M.; Huang, R.; Li, H. Y.; Lv, W. X.; Lin, X. J.; Huang, R. Q.; Wang, Y. Diabetes immunity-modulated multifunctional hydrogel with cascade enzyme catalytic activity for bacterial wound treatment. Biomaterials 2022, 289, 121790.

[34]

Wei, S. K.; Xu, P. C.; Yao, Z. X.; Cui, X.; Lei, X. X.; Li, L. L.; Dong, Y. Q.; Zhu, W. D.; Guo, R.; Cheng, B. A composite hydrogel with co-delivery of antimicrobial peptides and platelet-rich plasma to enhance healing of infected wounds in diabetes. Acta Biomater. 2021, 124, 205–218.

[35]

Graf, F.; Horn, P.; Ho, A. D.; Boutros, M.; Maercker, C. The extracellular matrix proteins type I collagen, type III collagen, fibronectin, and laminin 421 stimulate migration of cancer cells. FASEB J. 2021, 35, e21692.

[36]

Zhou, Y.; Zhang, X. L.; Lu, S. T.; Zhang, N. Y.; Zhang, H. J.; Zhang, J.; Zhang, J. Human adipose-derived mesenchymal stem cells-derived exosomes encapsulated in pluronic F127 hydrogel promote wound healing and regeneration. Stem Cell Res. Ther. 2022, 13, 407.

[37]

Xu, Z.; Liu, G.; Zheng, L.; Wu, J. A polyphenol-modified chitosan hybrid hydrogel with enhanced antimicrobial and antioxidant activities for rapid healing of diabetic wounds. Nano Res. 2023, 16, 905–916.

Nano Research
Pages 9792-9803
Cite this article:
Li Y, Zhong W, Wu J, et al. Papillary fibroblast-recruiting injectable self-healing multifunctional hydrogels for wound regeneration. Nano Research, 2023, 16(7): 9792-9803. https://doi.org/10.1007/s12274-023-5648-4
Topics:

1073

Views

8

Crossref

8

Web of Science

9

Scopus

0

CSCD

Altmetrics

Received: 20 December 2022
Revised: 19 February 2023
Accepted: 07 March 2023
Published: 13 May 2023
© Tsinghua University Press 2023
Return