AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Excitation-assisted pseudo-ferroelectric effect in ultrathin graphene/phosphorene heterostructure

Huan LuWanlin Guo( )
State Key Laboratory of Mechanics and Control of Mechanical Structures, Key Laboratory for Intelligent Nano Materials and Devices of Ministry of Education, and Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
Show Author Information

Graphical Abstract

A new exciton mechanism accounts for pseudo-ferroelectric behaviors with bipolarity and anisotropy in graphene/phosphorene heterostructures.

Abstract

Pseudo-ferroelectric transistors have attracted particular interest owing to their applications in the non-volatile memories and neuromorphic circuits; however, it remains to be explored in the limit of few-layer devices. Here we reveal a pseudo-ferroelectric phenomenon in the ultrathin graphene/black phosphorene (G/BP) heterostructure by first-principles calculations. Putting forward an excitation-assisted mechanism, the ferroelectric-like hysteresis loop can be explained by a combined effect of the external electric fields dependent bipolarity and anisotropy in the G/BP heterostructure. Considering the build-in electric field, the bipolar behavior results in the multistate effect of the G/BP heterostructure when modulating the applied electric field. The anisotropic hybridization caused by the susceptible Dirac electrons in graphene and the large in-plane anisotropy in BP provides the interfacial states, which trap excitations and stabilize the multistate. The pseudo-ferroelectric behavior should be useful for interpreting transport experiments in gated G/BP devices and exploring its applications in memories or synaptic devices.

Electronic Supplementary Material

Download File(s)
12274_2023_5649_MOESM1_ESM.pdf (1.2 MB)

References

[1]

Wu, S. Y. A new ferroelectric memory device, metal-ferroelectric-semiconductor transistor. IEEE Trans. Electron Devices 1974, 21, 499–504.

[2]

Scott, J. F.; Paz de Araujo, C. A. Ferroelectric memories. Science 1989, 246, 1400–1405.

[3]
Wang, C. S.; You, L.; Cobden, D.; Wang, J. L. Towards two-dimensional van der Waals ferroelectrics. Nat. Mater., in press, https://doi.org/10.1038/s41563-022-01422-y.
[4]

Wu, M. H. Two-dimensional van der Waals ferroelectrics: Scientific and technological opportunities. ACS Nano 2021, 15, 9229–9237.

[5]

Peng, Y.; Han, G. Q.; Liu, F. N.; Xiao, W. W.; Liu, Y.; Zhong, N.; Duan, C. G.; Feng, Z.; Dong, H.; Hao, Y. Ferroelectric-like behavior originating from oxygen vacancy dipoles in amorphous film for non-volatile memory. Nanoscale Res. Lett. 2020, 15, 134.

[6]

Lee, J. S.; Kang, B.; Jia, Q. X. Data retention characteristics of Bi3.25La0.75Ti3O12 thin films on conductive SrRuO3 electrodes. Appl. Phys. Lett. 2007, 91, 142901.

[7]

Yuan, G.; Yang, Y.; Or, S. W. Aging-induced double ferroelectric hysteresis loops in BiFeO3 multiferroic ceramic. Appl. Phys. Lett. 2007, 91, 122907.

[8]

Kliem, H.; Martin, B. Pseudo-ferroelectric properties by space charge polarization. J. Phys. Condens. Matter 2008, 20, 321001.

[9]

Pintilie, L.; Alexe, M. Ferroelectric-like hysteresis loop in nonferroelectric systems. Appl. Phys. Lett. 2005, 87, 112903.

[10]

Kim, K. H.; Gaba, S.; Wheeler, D.; Cruz-Albrecht, J. M.; Hussain, T.; Srinivasa, N.; Lu, W. A functional hybrid memristor crossbar-array/CMOS system for data storage and neuromorphic applications. Nano Lett. 2012, 12, 389–395.

[11]

Thomas, A. Memristor-based neural networks. J. Phys. D Appl. Phys. 2013, 46, 093001.

[12]

Wang, Z. Q.; Xu, H. Y.; Li, X. H.; Yu, H.; Liu, Y. C.; Zhu, X. J. Synaptic learning and memory functions achieved using oxygen ion migration/diffusion in an amorphous InGaZnO memristor. Adv. Funct. Mater. 2012, 22, 2759–2765.

[13]

Jo, S. H.; Chang, T.; Ebong, I.; Bhadviya, B. B.; Mazumder, P.; Lu, W. Nanoscale memristor device as synapse in neuromorphic systems. Nano Lett. 2010, 10, 1297–1301.

[14]

Robertson, J.; Wallace, R. M. High-K materials and metal gates for CMOS applications. Mater. Sci. Eng. R Rep. 2015, 88, 1–41.

[15]

Robertson, J. Interfaces and defects of high-K oxides on silicon. Solid-State Electron. 2005, 49, 283–293.

[16]

Balatti, S.; Larentis, S.; Gilmer, D. C.; Ielmini, D. Multiple memory states in resistive switching devices through controlled size and orientation of the conductive filament. Adv. Mater. 2013, 25, 1474–1478.

[17]

Nagashima, K.; Yanagida, T.; Oka, K.; Taniguchi, M.; Kawai, T.; Kim, J. S.; Park, B. H. Resistive switching multistate nonvolatile memory effects in a single cobalt oxide nanowire. Nano Lett. 2010, 10, 1359–1363.

[18]

Pletikosić, I.; Kralj, M.; Pervan, P.; Brako, R.; Coraux, J.; N’Diaye, A. T.; Busse, C.; Michely, T. Dirac cones and minigaps for graphene on Ir(111). Phys. Rev. Lett. 2009, 102, 056808.

[19]

Ferrari, A. C.; Meyer, J. C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K. S.; Roth, S. et al. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 2006, 97, 187401.

[20]

Sprinkle, M.; Siegel, D.; Hu, Y.; Hicks, J.; Tejeda, A.; Taleb-Ibrahimi, A.; Le Fèvre, P.; Bertran, F.; Vizzini, S.; Enriquez, H. et al. First direct observation of a nearly ideal graphene band structure. Phys. Rev. Lett. 2009, 103, 226803.

[21]

Padilha, J. E.; Fazzio, A.; da Silva, A. J. R. Van der Waals heterostructure of phosphorene and graphene: Tuning the Schottky barrier and doping by electrostatic gating. Phys. Rev. Lett. 2015, 114, 066803.

[22]

Cai, Y. Q.; Zhang, G.; Zhang, Y. W. Electronic properties of phosphorene/graphene and phosphorene/hexagonal boron nitride heterostructures. J. Phys. Chem. C 2015, 119, 13929–13936.

[23]

Haidar, E. A.; Tawfik, S. A.; Stampfl, C. Twist-dependent electron charge transfer and transport in phosphorene-graphene heterobilayers. J. Phys. Chem. C 2021, 125, 25886–25897.

[24]

Hu, W.; Wang, T.; Yang, J. L. Tunable Schottky contacts in hybrid graphene-phosphorene nanocomposites. J. Mater. Chem. C 2015, 3, 4756–4761.

[25]

Ma, Y. D.; Dai, Y.; Guo, M.; Niu, C. W.; Lu, J. B.; Huang, B. B. Electronic and magnetic properties of perfect, vacancy-doped, and nonmetal adsorbed MoSe2, MoTe2 and WS2 monolayers. Phys. Chem. Chem. Phys. 2011, 13, 15546–15553.

[26]

Shamekhi, M.; Ghobadi, N. Band structure and Schottky barrier modulation in multilayer black phosphorene and black phosphorene/graphene heterostructure through out-of-plane strain. Phys. B Condens. Matter 2020, 580, 411923.

[27]

Pei, Q. X.; Zhang, X. L.; Ding, Z. W.; Zhang, Y. Y.; Zhang, Y. W. Thermal stability and thermal conductivity of phosphorene in phosphorene/graphene van der Waals heterostructures. Phys. Chem. Chem. Phys. 2017, 19, 17180–17186.

[28]

Guo, G. C.; Wang, D.; Wei, X. L.; Zhang, Q.; Liu, H.; Lau, W. M.; Liu, L. M. First-principles study of phosphorene and graphene heterostructure as anode materials for rechargeable Li batteries. J. Phys. Chem. Lett. 2015, 6, 5002–5008.

[29]

Lee, H. W.; Jung, H.; Yeo, B. C.; Kim, D.; Han, S. S. Atomistic sodiation mechanism of a phosphorene/graphene heterostructure for sodium-ion batteries determined by first-principles calculations. J. Phys. Chem. C 2018, 122, 20653–20660.

[30]

Carvalho, A.; Wang, M.; Zhu, X.; Rodin, A. S.; Su, H. B.; Castro Neto, A. H. Phosphorene: From theory to applications. Nat. Rev. Mater. 2016, 1, 16061.

[31]

Liu, H.; Neal, A. T.; Zhu, Z.; Luo, Z.; Xu, X. F.; Tománek, D.; Ye, P. D. Phosphorene: An unexplored 2D semiconductor with a high hole mobility. ACS Nano 2014, 8, 4033–4041.

[32]

Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.

[33]

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

[34]

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865.

[35]

Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

[36]

Klimeš, J.; Bowler, D. R.; Michaelides, A. Chemical accuracy for the van der Waals density functional. J. Phys. Condens. Matter 2010, 22, 022201.

[37]

Heyd, J.; Scuseria, G. E.; Ernzerhof, M. Hybrid functionals based on a screened coulomb potential. J. Chem. Phys. 2003, 118, 8207–8215.

[38]

Monkhorst, H. J.; Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192.

[39]

Neugebauer, J.; Scheffler, M. Adsorbate-substrate and adsorbate-adsorbate interactions of Na and K adlayers on Al(111). Phys. Rev. B 1992, 46, 16067–16080.

[40]

Bengtsson, L. Dipole correction for surface supercell calculations. Phys. Rev. B 1999, 59, 12301–12304.

[41]

Van Troeye, B.; Lherbier, A.; Charlier, J. C.; Gonze, X. Large phosphorene in-plane contraction induced by interlayer interactions in graphene-phosphorene heterostructures. Phys. Rev. Mater. 2018, 2, 074001.

[42]

Peng, X. H.; Wei, Q.; Copple, A. Strain-engineered direct-indirect band gap transition and its mechanism in two-dimensional phosphorene. Phys. Rev. B 2014, 90, 085402.

[43]

Rodin, A. S.; Carvalho, A.; Neto, A. H. C. Strain-induced gap modification in black phosphorus. Phys. Rev. Lett. 2014, 112, 176801.

[44]

Si, C.; Sun, Z. M.; Liu, F. Strain engineering of graphene: A review. Nanoscale 2016, 8, 3207–3217.

[45]

Wu, H. Z.; Bandaru, S.; Liu, J.; Li, L. L.; Wang, Z. L. Adsorption of H2O, H2, O2, CO, NO, and CO2 on graphene/g-C3N4 nanocomposite investigated by density functional theory. Appl. Surf. Sci. 2018, 430, 125–136.

[46]

Cai, X. H.; Yang, Q.; Wang, M. First-principles investigations of the geometric structures and electronic properties of pristine and Ag/Au-doped Janus MoSSe/C60 and WSSe/C60 heterostructures. Appl. Surf. Sci. 2022, 575, 151660.

[47]

Liu, J.; Shen, T.; Ren, J. C.; Li, S.; Liu, W. Role of van der Waals interactions on the binding energies of 2D transition-metal dichalcogenides. Appl. Surf. Sci. 2023, 608, 155163.

[48]

Giustino, F.; Pasquarello, A. Theory of atomic-scale dielectric permittivity at insulator interfaces. Phys. Rev. B 2005, 71, 144104.

[49]

Li, Y.; Chen, H.; Huang, L.; Li, J. B. Ab initio study of the dielectric and electronic properties of multilayer GaS films. J. Phys. Chem. Lett. 2015, 6, 1059–1064.

[50]

Kumar, P.; Bhadoria, B. S.; Kumar, S.; Bhowmick, S.; Chauhan, Y. S.; Agarwal, A. Thickness and electric-field-dependent polarizability and dielectric constant in phosphorene. Phys. Rev. B 2016, 93, 195428.

[51]

Santos, E. J. G.; Kaxiras, E. Electrically driven tuning of the dielectric constant in MoS2 Layers. ACS Nano 2013, 7, 10741–10746.

Nano Research
Pages 12587-12593
Cite this article:
Lu H, Guo W. Excitation-assisted pseudo-ferroelectric effect in ultrathin graphene/phosphorene heterostructure. Nano Research, 2023, 16(11): 12587-12593. https://doi.org/10.1007/s12274-023-5649-3
Topics:

1085

Views

3

Crossref

3

Web of Science

3

Scopus

0

CSCD

Altmetrics

Received: 14 January 2023
Revised: 05 March 2023
Accepted: 07 March 2023
Published: 25 April 2023
© Tsinghua University Press 2023
Return