Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Pseudo-ferroelectric transistors have attracted particular interest owing to their applications in the non-volatile memories and neuromorphic circuits; however, it remains to be explored in the limit of few-layer devices. Here we reveal a pseudo-ferroelectric phenomenon in the ultrathin graphene/black phosphorene (G/BP) heterostructure by first-principles calculations. Putting forward an excitation-assisted mechanism, the ferroelectric-like hysteresis loop can be explained by a combined effect of the external electric fields dependent bipolarity and anisotropy in the G/BP heterostructure. Considering the build-in electric field, the bipolar behavior results in the multistate effect of the G/BP heterostructure when modulating the applied electric field. The anisotropic hybridization caused by the susceptible Dirac electrons in graphene and the large in-plane anisotropy in BP provides the interfacial states, which trap excitations and stabilize the multistate. The pseudo-ferroelectric behavior should be useful for interpreting transport experiments in gated G/BP devices and exploring its applications in memories or synaptic devices.
Wu, S. Y. A new ferroelectric memory device, metal-ferroelectric-semiconductor transistor. IEEE Trans. Electron Devices 1974, 21, 499–504.
Scott, J. F.; Paz de Araujo, C. A. Ferroelectric memories. Science 1989, 246, 1400–1405.
Wu, M. H. Two-dimensional van der Waals ferroelectrics: Scientific and technological opportunities. ACS Nano 2021, 15, 9229–9237.
Peng, Y.; Han, G. Q.; Liu, F. N.; Xiao, W. W.; Liu, Y.; Zhong, N.; Duan, C. G.; Feng, Z.; Dong, H.; Hao, Y. Ferroelectric-like behavior originating from oxygen vacancy dipoles in amorphous film for non-volatile memory. Nanoscale Res. Lett. 2020, 15, 134.
Lee, J. S.; Kang, B.; Jia, Q. X. Data retention characteristics of Bi3.25La0.75Ti3O12 thin films on conductive SrRuO3 electrodes. Appl. Phys. Lett. 2007, 91, 142901.
Yuan, G.; Yang, Y.; Or, S. W. Aging-induced double ferroelectric hysteresis loops in BiFeO3 multiferroic ceramic. Appl. Phys. Lett. 2007, 91, 122907.
Kliem, H.; Martin, B. Pseudo-ferroelectric properties by space charge polarization. J. Phys. Condens. Matter 2008, 20, 321001.
Pintilie, L.; Alexe, M. Ferroelectric-like hysteresis loop in nonferroelectric systems. Appl. Phys. Lett. 2005, 87, 112903.
Kim, K. H.; Gaba, S.; Wheeler, D.; Cruz-Albrecht, J. M.; Hussain, T.; Srinivasa, N.; Lu, W. A functional hybrid memristor crossbar-array/CMOS system for data storage and neuromorphic applications. Nano Lett. 2012, 12, 389–395.
Thomas, A. Memristor-based neural networks. J. Phys. D Appl. Phys. 2013, 46, 093001.
Wang, Z. Q.; Xu, H. Y.; Li, X. H.; Yu, H.; Liu, Y. C.; Zhu, X. J. Synaptic learning and memory functions achieved using oxygen ion migration/diffusion in an amorphous InGaZnO memristor. Adv. Funct. Mater. 2012, 22, 2759–2765.
Jo, S. H.; Chang, T.; Ebong, I.; Bhadviya, B. B.; Mazumder, P.; Lu, W. Nanoscale memristor device as synapse in neuromorphic systems. Nano Lett. 2010, 10, 1297–1301.
Robertson, J.; Wallace, R. M. High-K materials and metal gates for CMOS applications. Mater. Sci. Eng. R Rep. 2015, 88, 1–41.
Robertson, J. Interfaces and defects of high-K oxides on silicon. Solid-State Electron. 2005, 49, 283–293.
Balatti, S.; Larentis, S.; Gilmer, D. C.; Ielmini, D. Multiple memory states in resistive switching devices through controlled size and orientation of the conductive filament. Adv. Mater. 2013, 25, 1474–1478.
Nagashima, K.; Yanagida, T.; Oka, K.; Taniguchi, M.; Kawai, T.; Kim, J. S.; Park, B. H. Resistive switching multistate nonvolatile memory effects in a single cobalt oxide nanowire. Nano Lett. 2010, 10, 1359–1363.
Pletikosić, I.; Kralj, M.; Pervan, P.; Brako, R.; Coraux, J.; N’Diaye, A. T.; Busse, C.; Michely, T. Dirac cones and minigaps for graphene on Ir(111). Phys. Rev. Lett. 2009, 102, 056808.
Ferrari, A. C.; Meyer, J. C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K. S.; Roth, S. et al. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 2006, 97, 187401.
Sprinkle, M.; Siegel, D.; Hu, Y.; Hicks, J.; Tejeda, A.; Taleb-Ibrahimi, A.; Le Fèvre, P.; Bertran, F.; Vizzini, S.; Enriquez, H. et al. First direct observation of a nearly ideal graphene band structure. Phys. Rev. Lett. 2009, 103, 226803.
Padilha, J. E.; Fazzio, A.; da Silva, A. J. R. Van der Waals heterostructure of phosphorene and graphene: Tuning the Schottky barrier and doping by electrostatic gating. Phys. Rev. Lett. 2015, 114, 066803.
Cai, Y. Q.; Zhang, G.; Zhang, Y. W. Electronic properties of phosphorene/graphene and phosphorene/hexagonal boron nitride heterostructures. J. Phys. Chem. C 2015, 119, 13929–13936.
Haidar, E. A.; Tawfik, S. A.; Stampfl, C. Twist-dependent electron charge transfer and transport in phosphorene-graphene heterobilayers. J. Phys. Chem. C 2021, 125, 25886–25897.
Hu, W.; Wang, T.; Yang, J. L. Tunable Schottky contacts in hybrid graphene-phosphorene nanocomposites. J. Mater. Chem. C 2015, 3, 4756–4761.
Ma, Y. D.; Dai, Y.; Guo, M.; Niu, C. W.; Lu, J. B.; Huang, B. B. Electronic and magnetic properties of perfect, vacancy-doped, and nonmetal adsorbed MoSe2, MoTe2 and WS2 monolayers. Phys. Chem. Chem. Phys. 2011, 13, 15546–15553.
Shamekhi, M.; Ghobadi, N. Band structure and Schottky barrier modulation in multilayer black phosphorene and black phosphorene/graphene heterostructure through out-of-plane strain. Phys. B Condens. Matter 2020, 580, 411923.
Pei, Q. X.; Zhang, X. L.; Ding, Z. W.; Zhang, Y. Y.; Zhang, Y. W. Thermal stability and thermal conductivity of phosphorene in phosphorene/graphene van der Waals heterostructures. Phys. Chem. Chem. Phys. 2017, 19, 17180–17186.
Guo, G. C.; Wang, D.; Wei, X. L.; Zhang, Q.; Liu, H.; Lau, W. M.; Liu, L. M. First-principles study of phosphorene and graphene heterostructure as anode materials for rechargeable Li batteries. J. Phys. Chem. Lett. 2015, 6, 5002–5008.
Lee, H. W.; Jung, H.; Yeo, B. C.; Kim, D.; Han, S. S. Atomistic sodiation mechanism of a phosphorene/graphene heterostructure for sodium-ion batteries determined by first-principles calculations. J. Phys. Chem. C 2018, 122, 20653–20660.
Carvalho, A.; Wang, M.; Zhu, X.; Rodin, A. S.; Su, H. B.; Castro Neto, A. H. Phosphorene: From theory to applications. Nat. Rev. Mater. 2016, 1, 16061.
Liu, H.; Neal, A. T.; Zhu, Z.; Luo, Z.; Xu, X. F.; Tománek, D.; Ye, P. D. Phosphorene: An unexplored 2D semiconductor with a high hole mobility. ACS Nano 2014, 8, 4033–4041.
Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.
Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.
Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865.
Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.
Klimeš, J.; Bowler, D. R.; Michaelides, A. Chemical accuracy for the van der Waals density functional. J. Phys. Condens. Matter 2010, 22, 022201.
Heyd, J.; Scuseria, G. E.; Ernzerhof, M. Hybrid functionals based on a screened coulomb potential. J. Chem. Phys. 2003, 118, 8207–8215.
Monkhorst, H. J.; Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192.
Neugebauer, J.; Scheffler, M. Adsorbate-substrate and adsorbate-adsorbate interactions of Na and K adlayers on Al(111). Phys. Rev. B 1992, 46, 16067–16080.
Bengtsson, L. Dipole correction for surface supercell calculations. Phys. Rev. B 1999, 59, 12301–12304.
Van Troeye, B.; Lherbier, A.; Charlier, J. C.; Gonze, X. Large phosphorene in-plane contraction induced by interlayer interactions in graphene-phosphorene heterostructures. Phys. Rev. Mater. 2018, 2, 074001.
Peng, X. H.; Wei, Q.; Copple, A. Strain-engineered direct-indirect band gap transition and its mechanism in two-dimensional phosphorene. Phys. Rev. B 2014, 90, 085402.
Rodin, A. S.; Carvalho, A.; Neto, A. H. C. Strain-induced gap modification in black phosphorus. Phys. Rev. Lett. 2014, 112, 176801.
Si, C.; Sun, Z. M.; Liu, F. Strain engineering of graphene: A review. Nanoscale 2016, 8, 3207–3217.
Wu, H. Z.; Bandaru, S.; Liu, J.; Li, L. L.; Wang, Z. L. Adsorption of H2O, H2, O2, CO, NO, and CO2 on graphene/g-C3N4 nanocomposite investigated by density functional theory. Appl. Surf. Sci. 2018, 430, 125–136.
Cai, X. H.; Yang, Q.; Wang, M. First-principles investigations of the geometric structures and electronic properties of pristine and Ag/Au-doped Janus MoSSe/C60 and WSSe/C60 heterostructures. Appl. Surf. Sci. 2022, 575, 151660.
Liu, J.; Shen, T.; Ren, J. C.; Li, S.; Liu, W. Role of van der Waals interactions on the binding energies of 2D transition-metal dichalcogenides. Appl. Surf. Sci. 2023, 608, 155163.
Giustino, F.; Pasquarello, A. Theory of atomic-scale dielectric permittivity at insulator interfaces. Phys. Rev. B 2005, 71, 144104.
Li, Y.; Chen, H.; Huang, L.; Li, J. B. Ab initio study of the dielectric and electronic properties of multilayer GaS films. J. Phys. Chem. Lett. 2015, 6, 1059–1064.
Kumar, P.; Bhadoria, B. S.; Kumar, S.; Bhowmick, S.; Chauhan, Y. S.; Agarwal, A. Thickness and electric-field-dependent polarizability and dielectric constant in phosphorene. Phys. Rev. B 2016, 93, 195428.
Santos, E. J. G.; Kaxiras, E. Electrically driven tuning of the dielectric constant in MoS2 Layers. ACS Nano 2013, 7, 10741–10746.