AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Light trapping enhanced broadband photodetection and imaging based on MoSe2/pyramid Si vdW heterojunction

Shaoqin Pan1Shuo-En Wu2Jinjin Hei1Zhiwen Zhou3Longhui Zeng2( )Yakun Xing1Pei Lin1( )Zhifeng Shi1Yongtao Tian1Xinjian Li1Di Wu1( )
School of Physics and Microelectronics, Key Laboratory of Material Physics, Zhengzhou University, Zhengzhou 450052, China
Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA 92093, USA
Department of Electronic Engineering, Chinese University of Hong Kong, Hong Kong 999077, China
Show Author Information

Graphical Abstract

A MoSe2/pyramid Si mixed-dimensional van der Waals (vdW) heterojunction array with strong light trapping effect was fabricated, which shows broadband self-driven photodetection and imaging performance.

Abstract

Two-dimensional (2D) layered materials have been considered promising candidates for next-generation optoelectronics. However, the performance of 2D photodetectors still has much room for improvement due to weak light absorption of planar 2D materials and lack of high-quality heterojunction preparation technology. Notably, 2D materials integrating with mature bulk semiconductors are a promising pathway to overcome this limitation and promote the practical application on optoelectronics. In this work, we present the patterned assembly of MoSe2/pyramid Si mixed-dimensional van der Waals (vdW) heterojunction arrays for broadband photodetection and imaging. Benefited from the light trapping effect induced enhanced optical absorption and high-quality vdW heterojunction, the photodetector demonstrates a wide spectral response range from 265 to 1550 nm, large responsivity up to 0.67 A·W−1, high specific detectivity of 1.84 × 1013 Jones, and ultrafast response time of 0.34/5.6 μs at 0 V. Moreover, the photodetector array exhibits outstanding broadband image sensing capability. This study offers a novel development route for high-performance and broadband photodetector array by MoSe2/pyramid Si mixed-dimensional heterojunction.

Electronic Supplementary Material

Download File(s)
12274_2023_5650_MOESM1_ESM.pdf (524.9 KB)

References

[1]

Chen, X. L.; Lu, X. B.; Deng, B. C.; Sinai, O.; Shao, Y. C.; Li, C.; Yuan, S. F.; Tran, V.; Watanabe, K.; Taniguchi, T. et al. Widely tunable black phosphorus mid-infrared photodetector. Nat. Commun. 2017, 8, 1672.

[2]

Koppens, F. H. L.; Mueller, T.; Avouris, P.; Ferrari, A. C.; Vitiello, M. S.; Polini, M. Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nat. Nanotechnol. 2014, 9, 780–793.

[3]

Rogalski, A. Infrared detectors: Status and trends. Prog. Quant. Electron. 2003, 27, 59–210.

[4]

Rogalski, A.; Antoszewski, J.; Faraone, L. Third-generation infrared photodetector arrays. J. Appl. Phys. 2009, 105, 091101.

[5]

Yin, J. B.; Tan, Z. J.; Hong, H.; Wu, J. X.; Yuan, H. T.; Liu, Y. J.; Chen, C.; Tan, C. W.; Yao, F. R.; Li, T. R. et al. Ultrafast and highly sensitive infrared photodetectors based on two-dimensional oxyselenide crystals. Nat. Commun. 2018, 9, 3311.

[6]

Wu, S. E.; Yao, L. L.; Shiller, A.; Barnard, A. H.; Azoulay, J. D.; Ng, T. N. Dual-gate organic electrochemical transistors for marine sensing. Adv. Electron. Mater. 2021, 7, 2100223.

[7]

Wu, D.; Guo, C. G.; Zeng, L. H.; Ren, X. Y.; Shi, Z. F.; Wen, L.; Chen, Q.; Zhang, M.; Li, X. J.; Shan, C. X. et al. Phase-controlled van der Waals growth of wafer-scale 2D MoTe2 layers for integrated high-sensitivity broadband infrared photodetection. Light Sci. Appl. 2023, 12, 5.

[8]

Chen, K.; Wan, X.; Xu, J. B. Epitaxial stitching and stacking growth of atomically thin transition-metal dichalcogenides (TMDCs) heterojunctions. Adv. Funct. Mater. 2017, 27, 1603884.

[9]

Jia, C.; Huang, X. W.; Wu, D.; Tian, Y. Z.; Guo, J. W.; Zhao, Z. H.; Shi, Z. F.; Tian, Y. T.; Jie, J. S.; Li, X. J. An ultrasensitive self-driven broadband photodetector based on a 2D-WS2/GaAs type-II Zener heterojunction. Nanoscale 2020, 12, 4435–4444.

[10]

Li, H. N.; Li, Y.; Aljarb, A.; Shi, Y. M.; Li, L. J. Epitaxial growth of two-dimensional layered transition-metal dichalcogenides: Growth mechanism, controllability, and scalability. Chem. Rev. 2018, 118, 6134–6150.

[11]

Wu, S. E.; Phongphaew, N.; Zhai, Y. C.; Yao, L.; Hsu, H. H.; Shiller, A.; Azoulay, J. D.; Ng, T. N. Multiplexed printed sensors for in situ monitoring in bivalve aquaculture. Nanoscale 2022, 14, 16110–16119.

[12]

Wu, D.; Tian, R.; Lin, P.; Shi, Z. F.; Chen, X.; Jia, M. C.; Tian, Y. T.; Li, X. J.; Zeng, L. H.; Jie, J. S. Wafer-scale synthesis of wide bandgap 2D GeSe2 layers for self-powered ultrasensitive UV photodetection and imaging. Nano Energy 2022, 104, 107972.

[13]

Luo, L. B.; Wang, D.; Xie, C.; Hu, J. G.; Zhao, X. Y.; Liang, F. X. PdSe2 multilayer on germanium nanocones array with light trapping effect for sensitive infrared photodetector and image sensing application. Adv. Funct. Mater. 2019, 29, 1900849.

[14]

Mak, K. F.; Shan, J. Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. Nat. Photon. 2016, 10, 216–226.

[15]

Wu, D.; Guo, J. W.; Du, J.; Xia, C. X.; Zeng, L. H.; Tian, Y. Z.; Shi, Z. F.; Tian, Y. T.; Li, X. J.; Tsang, Y. H. et al. Highly polarization-sensitive, broadband, self-powered photodetector based on graphene/PdSe2/germanium heterojunction. ACS Nano 2019, 13, 9907–9917.

[16]

Wu, D.; Wang, Y. G.; Zeng, L. H.; Jia, C.; Wu, E. P.; Xu, T. T.; Shi, Z. F.; Tian, Y. T.; Li, X. J.; Tsang, Y. H. Design of 2D layered PtSe2 heterojunction for the high-performance, room-temperature, broadband, infrared photodetector. ACS Photonics 2018, 5, 3820–3827.

[17]

Chang, C.; Chen, W.; Chen, Y.; Chen, Y. H.; Chen, Y.; Ding, F.; Fan, C. H.; Fan, H. J.; Fan, Z. X.; Gong, C. et al. Recent progress on two-dimensional materials. Acta Phys. Chim. Sin. 2021, 37, 2108017.

[18]

Geim, A. K.; Grigorieva, I. V. Van der Waals heterostructures. Nature 2013, 499, 419–425.

[19]

Ji, Q. Q.; Zhang, Y. F.; Gao, T.; Zhang, Y.; Ma, D. L.; Liu, M. X.; Chen, Y. B.; Qiao, X. F.; Tan, P. H.; Kan, M. et al. Epitaxial monolayer MoS2 on mica with novel photoluminescence. Nano Lett. 2013, 13, 3870–3877.

[20]

Zhang, X. T.; Choudhury, T. H.; Chubarov, M.; Xiang, Y.; Jariwala, B.; Zhang, F.; Alem, N.; Wang, G. C.; Robinson, J. A.; Redwing, J. M. Diffusion-controlled epitaxy of large area coalesced WSe2 monolayers on sapphire. Nano Lett. 2018, 18, 1049–1056.

[21]

Zheng, W. S.; Xie, T.; Zhou, Y.; Chen, Y. L.; Jiang, W.; Zhao, S. L.; Wu, J. X.; Jing, Y. M.; Wu, Y.; Chen, G. C. et al. Patterning two-dimensional chalcogenide crystals of Bi2Se3 and In2Se3 and efficient photodetectors. Nature Commun. 2015, 6, 6972.

[22]
Wu, D.; Xu, M. M.; Zeng, L. H.; Shi, Z. F.; Tian, Y. Z.; Li, X. J.; Shan, C. X.; Jie, J. S. In situ fabrication of PdSe2/GaN Schottky junction for polarization-sensitive ultraviolet photodetection with high dichroic ratio. ACS Nano 2022, 16, 5545–5555.
[23]

Wu, C. Y.; Cao, K. J.; Le, Y. X.; Li, J. Y.; Zhu, C. Y.; Wang, L.; Zhou, Y. X.; Wu, D.; Luo, L. B. Spectral engineering of InSe nanobelts for full-color imaging by tailoring the thickness. J. Phys. Chem. Lett. 2022, 13, 2668–2673.

[24]

Wu, D.; Guo, J. W.; Wang, C. Q.; Ren, X. Y.; Chen, Y. S.; Lin, P.; Zeng, L. H.; Shi, Z. F.; Li, X. J.; Shan, C. X. et al. Ultrabroadband and high-detectivity photodetector based on WS2/Ge heterojunction through defect engineering and interface passivation. ACS Nano 2021, 15, 10119–10129.

[25]

Xu, Y.; Ma, Y. M.; Yu, Y. Q.; Chen, S. R.; Chang, Y. J.; Chen, X.; Xu, G. B. Self-powered, ultra-high detectivity and high-speed near-infrared photodetectors from stacked-layered MoSe2/Si heterojunction. Nanotechnology 2021, 32, 075201.

[26]

Ugeda, M. M.; Bradley, A. J.; Shi, S. F.; Da Jornada, F. H.; Zhang, Y.; Qiu, D. Y.; Ruan, W.; Mo, S. K.; Hussain, Z.; Shen, Z. X. et al. Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor. Nat. Mater. 2014, 13, 1091–1095.

[27]

Yu, Y. Q.; Li, Z.; Lu, Z. J.; Geng, X. S.; Lu, Y. C.; Xu, G. B.; Wang, L.; Jie, J. S. Graphene/MoS2/Si nanowires Schottky-NP bipolar van der Waals heterojunction for ultrafast photodetectors. IEEE Electr. Device Lett. 2018, 39, 1688–1691.

[28]

Wu, D.; Zhao, Z. H.; Lu, W.; Rogée, L.; Zeng, L. H.; Lin, P.; Shi, Z. F.; Tian, Y. T.; Li, X. J.; Tsang, Y. H. Highly sensitive solar-blind deep ultraviolet photodetector based on graphene/PtSe2/β-Ga2O3 2D/3D Schottky junction with ultrafast speed. Nano Res. 2021, 14, 1973–1979.

[29]

Wu, D.; Guo, C. G.; Wang, Z. Y.; Ren, X. Y.; Tian, Y. Z.; Shi, Z. F.; Lin, P.; Tian, Y. T.; Chen, Y. S.; Li, X. J. A defect-induced broadband photodetector based on WS2/pyramid Si 2D/3D mixed-dimensional heterojunction with a light confinement effect. Nanoscale 2021, 13, 13550–13557.

[30]

Lu, Z. J.; Xu, Y.; Yu, Y. Q.; Xu, K. W.; Mao, J.; Xu, G. B.; Ma, Y. M.; Wu, D.; Jie, J. S. Ultrahigh speed and broadband few-layer MoTe2/Si 2D-3D heterojunction-based photodiodes fabricated by pulsed laser deposition. Adv. Funct. Mater. 2020, 30, 1907951.

[31]

Mao, J.; Yu, Y. Q.; Wang, L.; Zhang, X. J.; Wang, Y. M.; Shao, Z. B.; Jie, J. S. Ultrafast, broadband photodetector based on MoSe2/silicon heterojunction with vertically standing layered structure using graphene as transparent electrode. Adv. Sci. 2016, 3, 1600018.

[32]

Wang, K. X.; Yu, Z. F.; Liu, V.; Cui, Y.; Fan, S. H. Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings. Nano Lett. 2012, 12, 1616–1619.

[33]

Xiao, P.; Mao, J.; Ding, K.; Luo, W. J.; Hu, W. D.; Zhang, X. J.; Zhang, X. H.; Jie, J. S. Solution-processed 3D RGO-MoS2/pyramid Si heterojunction for ultrahigh detectivity and ultra-broadband photodetection. Adv. Mater. 2018, 30, 1801729.

[34]

Liang, F. X.; Zhao, X. Y.; Jiang, J. J.; Hu, J. G.; Xie, W. Q.; Lv, J.; Zhang, Z. X.; Wu, D.; Luo, L. B. Light confinement effect induced highly sensitive, self-driven near-infrared photodetector and image sensor based on multilayer PdSe2/pyramid Si heterojunction. Small 2019, 15, 1903831.

[35]

Abdallah, W. A.; Nelson, A. E. Characterization of MoSe2(0001) and ion-sputtered MoSe2 by XPS. J. Mater. Sci. 2005, 40, 2679–2681.

[36]

Tang, H.; Dou, K. P.; Kaun, C. C.; Kuang, Q.; Yang, S. H. MoSe2 nanosheets and their graphene hybrids: Synthesis, characterization and hydrogen evolution reaction studies. J. Mater. Chem. A 2014, 2, 360–364.

[37]

Tonndorf, P.; Schmidt, R.; Böttger, P.; Zhang, X.; Börner, J.; Liebig, A.; Albrecht, M.; Kloc, C.; Gordan, O.; Zahn, D. R. T. et al. Photoluminescence emission and Raman response of monolayer MoS2, MoSe2, and WSe2. Opt. Express 2013, 21, 4908–4916.

[38]

Wang, Y. G.; Huang, X. W.; Wu, D.; Zhuo, R. R.; Wu, E. P.; Jia, C.; Shi, Z. F.; Xu, T. T.; Tian, Y. T.; Li, X. J. A room-temperature near-infrared photodetector based on a MoS2/CdTe p-n heterojunction with a broadband response up to 1700 nm. J. Mater. Chem. C 2018, 6, 4861–4865.

[39]

Zhang, X. R.; Meng, Z. S.; Rao, D. W.; Wang, Y. H.; Shi, Q.; Liu, Y. Z.; Wu, H. P.; Deng, K. M.; Liu, H. Y.; Lu, R. F. Efficient band structure tuning, charge separation, and visible-light response in ZrS2-based van der Waals heterostructures. Energy Environ. Sci. 2016, 9, 841–849.

[40]

Wang, Y. M.; Ding, K.; Sun, B. Q.; Lee, S. T.; Jie, J. S. Two-dimensional layered material/silicon heterojunctions for energy and optoelectronic applications. Nano Res. 2016, 9, 72–93.

[41]

Jia, C.; Wu, D.; Wu, E. P.; Guo, J. W.; Zhao, Z. H.; Shi, Z. F.; Xu, T. T.; Huang, X. W.; Tian, Y. T.; Li, X. J. A self-powered high-performance photodetector based on a MoS2/GaAs heterojunction with high polarization sensitivity. J. Mater. Chem. C 2019, 7, 3817–3821.

[42]

Li, J. Y.; Shan, L. Q.; Liang, L. Y.; Chen, S. R.; Wang, L.; Zhou, Y. X.; Wu, C. Y.; Luo, L. B. Light trapping in conformal CuO/Si pyramids heterojunction for self-powered broadband photodetection. IEEE Photon. Tech. Lett. 2022, 34, 1163–1166.

[43]
Zeng, L. H.; Wu, D.; Lin, S. H.; Xie, C.; Yuan, H. Y.; Lu, W.; Lau, S. P.; Chai, Y.; Luo, L. B.; Li, Z. J. et al. Photodetectors: Controlled synthesis of 2D palladium diselenide for sensitive photodetector applications (Adv. Funct. Mater. 1/2019). Adv. Funct. Mater. 2019, 29, 1970005.
[44]

Mao, J.; Zhang, B. C.; Shi, Y. H.; Wu, X. F.; He, Y. Y.; Wu, D.; Jie, J. S.; Lee, C. S.; Zhang, X. H. Conformal MoS2/silicon nanowire array heterojunction with enhanced light trapping and effective interface passivation for ultraweak infrared light detection. Adv. Funct. Mater. 2022, 32, 2108174.

[45]

John, J. W.; Dhyani, V.; Maity, S.; Mukherjee, S.; Ray, S. K.; Kumar, V.; Das, S. Broadband infrared photodetector based on nanostructured MoSe2-Si heterojunction extended up to 2.5 μm spectral range. Nanotechnology 2020, 31, 455208.

[46]
Wu, E. P.; Wu, D.; Jia, C.; Wang, Y. G.; Yuan, H. Y.; Zeng, L. H.; Xu, T. T.; Shi, Z. F.; Tian, Y. T.; Li, X. J. In situ fabrication of 2D WS2/Si Type-II heterojunction for self-powered broadband photodetector with response up to mid-infrared. ACS Photonics 2019, 6, 565–572.
[47]

Zeng, L. H.; Lin, S. H.; Li, Z. J.; Zhang, Z. X.; Zhang, T. F.; Xie, C.; Mak, C. H.; Chai, Y.; Lau, S. P.; Luo, L. B. et al. Fast, self-driven, air-stable, and broadband photodetector based on vertically aligned PtSe2/GaAs heterojunction. Adv. Funct. Mater. 2018, 28, 1705970.

[48]

Kim, W.; Arpiainen, S.; Xue, H.; Soikkeli, M.; Qi, M.; Sun, Z. P.; Lipsanen, H.; Chaves, F. A.; Jiménez, D.; Prunnila, M. Photoresponse of graphene-gated graphene-GaSe heterojunction devices. ACS Appl. Nano Mater. 2018, 1, 3895–3902.

[49]

Massicotte, M.; Schmidt, P.; Vialla, F.; Watanabe, K.; Taniguchi, T.; Tielrooij, K. J.; Koppens, F. H. L. Photo-thermionic effect in vertical graphene heterostructures. Nat. Commun. 2016, 7, 12174.

[50]

Chen, H.; Luo, X. S.; Poon, A. W. Cavity-enhanced photocurrent generation by 1.55 μm wavelengths linear absorption in a p-i-n diode embedded silicon microring resonator. Appl. Phys. Lett. 2009, 95, 171111.

[51]

Hong, Q. S.; Cao, Y.; Xu, J.; Lu, H. M.; He, J. H.; Sun, J. L. Self-powered ultrafast broadband photodetector based on p-n heterojunctions of CuO/Si nanowire array. ACS Appl. Mater. Interfaces 2014, 6, 20887–20894.

[52]

Xie, C.; Zeng, L. H.; Zhang, Z. X.; Tsang, Y. H.; Luo, L. B.; Lee, J. H. High-performance broadband heterojunction photodetectors based on multilayered PtSe2 directly grown on a Si substrate. Nanoscale 2018, 10, 15285–15293.

[53]

Zeng, L.; Wu, D.; Jie, J.; Ren, X.; Hu, X.; Lau, S. P.; Chai, Y.; Tsang, Y. H. Van der Waals epitaxial growth of mosaic-like 2D platinum ditelluride layers for room-temperature mid-infrared photodetection up to 10.6 microm. Adv. Mater. 2020, 32, e2004412.

[54]

Sun, Z. H.; Liu, Z. K.; Li, J. H.; Tai, G. A.; Lau, S. P.; Yan, F. Infrared photodetectors based on CVD-grown graphene and PbS quantum dots with ultrahigh responsivity. Adv. Mater. 2012, 24, 5878–5883.

Nano Research
Pages 10552-10558
Cite this article:
Pan S, Wu S-E, Hei J, et al. Light trapping enhanced broadband photodetection and imaging based on MoSe2/pyramid Si vdW heterojunction. Nano Research, 2023, 16(7): 10552-10558. https://doi.org/10.1007/s12274-023-5650-x
Topics:

4041

Views

12

Crossref

11

Web of Science

10

Scopus

0

CSCD

Altmetrics

Received: 17 January 2023
Revised: 25 February 2023
Accepted: 07 March 2023
Published: 28 April 2023
© Tsinghua University Press 2023
Return