In solar cells, hybrid halide perovskites operate under constant bias, thus their stability towards electric field-induced degradation is of key importance. Here we report on evidence of previously unidentified electric field-induced transitions and degradation path of CH3NH3PbI3 (MAPbI3) using elemental and phase mapping. Thin films of MAPbI3 were deposited onto 1–2 µm-pitch interdigitated electrodes and subjected to direct current (DC)-polarization. The MAPbI3 layer polarized with < 0.8 V/µm DC electric field undergoes pronounced ion redistribution to methylammonium-rich MAPbI3−y (y < 0.6) and iodine-rich MA1−xPbI3 (x < 0.3) regions. Polarization-induced loss of both methylammonium and iodine provokes degradation of MAPbI3. Using nanofocus grazing-incidence wide-angle X-ray scattering (GIWAXS), we unambiguously showed that the bias voltage induces the transformation of β-MAPbI3 to metastable δ-MAPbI3 polymorph via alignment of polar organic cation with the electric field. This transformation is partially reversible upon field removal. However, once formed, δ-MAPbI3 disrupts the morphology of pristine film and undergoes decomposition to β-MAPbI3 (β-MAPI) and PbI2. With the aforementioned compositional and phase changes, only MA-rich part serves as the charge separation layer, while the I-rich excitation is blocked with the PbI2 barrier serving as holes trapping layer. These observations reveal the intermediate steps in electric-field-driven degradation of halide perovskites and show the role of polar cations in the process, which is instructive for further material design with higher stability metrics.
Fujiwara, H.; Kato, M.; Tamakoshi, M.; Miyadera, T.; Chikamatsu, M. Optical characteristics and operational principles of hybrid perovskite solar cells. Phys. Status Solidi (A) 2018, 215, 1700730.
Saba, M.; Cadelano, M.; Marongiu, D.; Chen, F. P.; Sarritzu, V.; Sestu, N.; Figus, C.; Aresti, M.; Piras, R.; Geddo Lehmann, A. et al. Correlated electron-hole plasma in organometal perovskites. Nat. Commun. 2014, 5, 5049.
Herz, L. M. Charge-carrier mobilities in metal halide perovskites: Fundamental mechanisms and limits. ACS Energy Lett. 2017, 2, 1539–1548.
Zakutayev, A.; Caskey, C. M.; Fioretti, A. N.; Ginley, D. S.; Vidal, J.; Stevanovic, V.; Tea, E.; Lany, S. Defect tolerant semiconductors for solar energy conversion. J. Phys. Chem. Lett. 2014, 5, 1117–1125.
Hutter, E. M.; Gélvez-Rueda, M. C.; Osherov, A.; Bulović, V.; Grozema, F. C.; Stranks, S. D.; Savenije, T. J. Direct-indirect character of the bandgap in methylammonium lead iodide perovskite. Nat. Mater. 2017, 16, 115–120.
Noh, J. H.; Im, S. H.; Heo, J. H.; Mandal, T. N.; Seok, S. I. Chemical management for colorful, efficient, and stable inorganic–organic hybrid nanostructured solar cells. Nano Lett. 2013, 13, 1764–1769.
Sadhanala, A.; Deschler, F.; Thomas, T. H.; Dutton, S. E.; Goedel, K. C.; Hanusch, F. C.; Lai, M. L.; Steiner, U.; Bein, T.; Docampo, P. et al. Preparation of single-phase films of CH3NH3Pb(I1−xBrx)3 with sharp optical band edges. J. Phys. Chem. Lett. 2014, 5, 2501–2505.
Zhao, Y. X.; Zhu, K. Solution chemistry engineering toward high-efficiency perovskite solar cells. J. Phys. Chem. Lett. 2014, 5, 4175–4186.
Stranks, S. D.; Nayak, P. K.; Zhang, W.; Stergiopoulos, T.; Snaith, H. J. Formation of thin films of organic-inorganic perovskites for high-efficiency solar cells. Angew. Chem., Int. Ed. 2015, 54, 3240–3248.
Zou, Y. Q.; Guo, R. J.; Buyruk, A.; Chen, W.; Xiao, T. X.; Yin, S. S.; Jiang, X. Y.; Kreuzer, L. P.; Mu, C.; Ameri, T. et al. Sodium dodecylbenzene sulfonate interface modification of methylammonium lead iodide for surface passivation of perovskite solar cells. ACS Appl. Mater. Interfaces 2020, 12, 52643–52651.
Wang, M.; Wang, H. X.; Li, W.; Hu, X. F.; Sun, K.; Zang, Z. G. Defect passivation using ultrathin PTAA layers for efficient and stable perovskite solar cells with a high fill factor and eliminated hysteresis. J. Mater. Chem. A 2019, 7, 26421–26428.
Hu, X. F.; Wang, H. X.; Wang, M.; Zang, Z. G. Interfacial defects passivation using fullerene-polymer mixing layer for planar-structure perovskite solar cells with negligible hysteresis. Sol. Energy 2020, 206, 816–825.
Luan, Y. G.; Wang, F. H.; Zhuang, J.; Lin, T.; Wei, Y. Z.; Chen, N. L.; Zhang, Y. Y.; Wang, F. Y.; Yu, P.; Mao, L. Q. et al. Dual-function interface engineering for efficient perovskite solar cells. EcoMat 2021, 3, e12092.
Wang, M.; Li, W.; Wang, H. X.; Yang, K.; Hu, X. F.; Sun, K.; Lu, S. R.; Zang, Z. G. Small molecule modulator at the interface for efficient perovskite solar cells with high short-circuit current density and hysteresis free. Adv. Electron. Mater. 2020, 6, 2000604.
Zhu, Y. Y.; Shu, L.; Zhang, Q. P.; Zhu, Y. D.; Poddar, S.; Wang, C.; He, Z. B.; Fan, Z. Y. Moth eye-inspired highly efficient, robust, and neutral-colored semitransparent perovskite solar cells for building-integrated photovoltaics. EcoMat 2021, 3, e12117.
Meng, L.; You, J. B.; Yang, Y. Addressing the stability issue of perovskite solar cells for commercial applications. Nat. Commun. 2018, 9, 5265.
Akbulatov, A. F.; Luchkin, S. Y.; Frolova, L. A.; Dremova, N. N.; Gerasimov, K. L.; Zhidkov, I. S.; Anokhin, D. V.; Kurmaev, E. Z.; Stevenson, K. J.; Troshin, P. A. Probing the intrinsic thermal and photochemical stability of hybrid and inorganic lead halide perovskites. J. Phys. Chem. Lett. 2017, 8, 1211–1218.
Udalova, N. N.; Tutantsev, A. S.; Chen, Q.; Kraskov, A.; Goodilin, E. A.; Tarasov, A. B. New features of photochemical decomposition of hybrid lead halide perovskites by laser irradiation. ACS Appl. Mater. Interfaces 2020, 12, 12755–12762.
Zhou, Y. Y.; Zhao, Y. X. Chemical stability and instability of inorganic halide perovskites. Energy Environ. Sci. 2019, 12, 1495–1511.
Cao, F. R.; Zhang, P.; Sun, H. X.; Wang, M.; Li, L. Degradation mechanism and stability improvement of formamidine-based perovskite solar cells under high humidity conditions. Nano Res. 2022, 15, 8955–8961.
Lv, X.; Chen, G. Y.; Zhu, X.; An, J. K.; Bao, J. C.; Xu, X. X. Ternary phase diagram of all-inorganic perovskite CsPbClaBrbI3−a−b nanocrystals. Nano Res. 2022, 15, 7590–7596.
Bryant, D.; Aristidou, N.; Pont, S.; Sanchez-Molina, I.; Chotchunangatchaval, T.; Wheeler, S.; Durrant, J. R.; Haque, S. A. Light and oxygen induced degradation limits the operational stability of methylammonium lead triiodide perovskite solar cells. Energy Environ. Sci. 2016, 9, 1655–1660.
Lin, Y. Z.; Chen, B.; Fang, Y. J.; Zhao, J. J.; Bao, C. X.; Yu, Z. H.; Deng, Y. H.; Rudd, P. N.; Yan, Y. F.; Yuan, Y. B. et al. Excess charge-carrier induced instability of hybrid perovskites. Nat. Commun. 2018, 9, 4981.
Bae, S.; Kim, S.; Lee, S. W.; Cho, K. J.; Park, S.; Lee, S.; Kang, Y.; Lee, H. S.; Kim, D. Electric-field-induced degradation of methylammonium lead iodide perovskite solar cells. J. Phys. Chem. Lett. 2016, 7, 3091–3096.
Wang, H. X.; Guerrero, A.; Bou, A.; Al-Mayouf, A. M.; Bisquert, J. Kinetic and material properties of interfaces governing slow response and long timescale phenomena in perovskite solar cells. Energy Environ. Sci. 2019, 12, 2054–2079.
Chen, H. Y.; Wang, L. Y.; Shen, C.; Zhang, J. H.; Guo, W. L. Strong electron-ion coupling in gradient halide perovskite heterojunction. Nano Res. 2021, 14, 1012–1017.
deQuilettes, D. W.; Zhang, W.; Burlakov, V. M.; Graham, D. J.; Leijtens, T.; Osherov, A.; Bulović, V.; Snaith, H. J.; Ginger, D. S.; Stranks, S. D. Photo-induced halide redistribution in organic-inorganic perovskite films. Nat. Commun. 2016, 7, 11683.
Kim, G. Y.; Senocrate, A.; Yang, T. Y.; Gregori, G.; Grätzel, M.; Maier, J. Large tunable photoeffect on ion conduction in halide perovskites and implications for photodecomposition. Nat. Mater. 2018, 17, 445–449.
Cheng, Y. H.; Liu, X. X.; Guan, Z. Q.; Li, M. L.; Zeng, Z. X.; Li, H. W.; Tsang, S. W.; Aberle, A. G.; Lin, F. Revealing the degradation and self-healing mechanisms in perovskite solar cells by sub-bandgap external quantum efficiency spectroscopy. Adv. Mater. 2021, 33, 2006170.
Ruan, S.; Surmiak, M. A.; Ruan, Y. L.; McMeekin, D. P.; Ebendorff-Heidepriem, H.; Cheng, Y. B.; Lu, J. F.; McNeill, C. R. Light induced degradation in mixed-halide perovskites. J. Mater. Chem. C 2019, 7, 9326–9334.
Gottesman, R.; Gouda, L.; Kalanoor, B. S.; Haltzi, E.; Tirosh, S.; Rosh-Hodesh, E.; Tischler, Y.; Zaban, A.; Quarti, C.; Mosconi, E. et al. Photoinduced reversible structural transformations in free-standing CH3NH3PbI3 perovskite films. J. Phys. Chem. Lett. 2015, 6, 2332–2338.
Ceratti, D. R.; Rakita, Y.; Cremonesi, L.; Tenne, R.; Kalchenko, V.; Elbaum, M.; Oron, D.; Potenza, M. A. C.; Hodes, G.; Cahen, D. Self-healing inside APbBr3 halide perovskite crystals. Adv. Mater. 2018, 30, 1706273.
Leijtens, T.; Hoke, E. T.; Grancini, G.; Slotcavage, D. J.; Eperon, G. E.; Ball, J. M.; De Bastiani, M.; Bowring, A. R.; Martino, N.; Wojciechowski, K. et al. Mapping electric field-induced switchable poling and structural degradation in hybrid lead halide perovskite thin films. Adv. Energy Mater. 2015, 5, 1500962.
Barbé, J.; Kumar, V.; Newman, M. J.; Lee, H. K. H.; Jain, S. M.; Chen, H.; Charbonneau, C.; Rodenburg, C.; Tsoi, W. C. Dark electrical bias effects on moisture-induced degradation in inverted lead halide perovskite solar cells measured by using advanced chemical probes. Sustain. Energy Fuels 2018, 2, 905–914.
Leijtens, T.; Kandada, A. R. S.; Eperon, G. E.; Grancini, G.; D’Innocenzo, V.; Ball, J. M.; Stranks, S. D.; Snaith, H. J.; Petrozza, A. Modulating the electron-hole interaction in a hybrid lead halide perovskite with an electric field. J. Am. Chem. Soc. 2015, 137, 15451–15459.
Li, C.; Guerrero, A.; Huettner, S.; Bisquert, J. Unravelling the role of vacancies in lead halide perovskite through electrical switching of photoluminescence. Nat. Commun. 2018, 9, 5113.
Futscher, M. H.; Lee, J. M.; McGovern, L.; Muscarella, L. A.; Wang, T. Y.; Haider, M. I.; Fakharuddin, A.; Schmidt-Mende, L.; Ehrler, B. Quantification of ion migration in CH3NH3PbI3 perovskite solar cells by transient capacitance measurements. Mater. Horiz. 2019, 6, 1497–1503.
Senocrate, A.; Moudrakovski, I.; Kim, G. Y.; Yang, T. Y.; Gregori, G.; Grätzel, M.; Maier, J. The Nature of ion conduction in methylammonium lead iodide: A multimethod approach. Angew. Chem., Int. Ed. 2017, 56, 7755–7759.
Yuan, Y. B.; Chae, J.; Shao, Y. C.; Wang, Q.; Xiao, Z. G.; Centrone, A.; Huang, J. S. Photovoltaic switching mechanism in lateral structure hybrid perovskite solar cells. Adv. Energy Mater. 2015, 5, 1500615.
Yuan, Y. B.; Wang, Q.; Shao, Y. C.; Lu, H. D.; Li, T.; Gruverman, A.; Huang, J. S. Electric-field-driven reversible conversion between methylammonium lead triiodide perovskites and lead iodide at elevated temperatures. Adv. Energy Mater. 2016, 6, 1501803.
Liu, Y. T.; Collins, L.; Proksch, R.; Kim, S.; Watson, B. R.; Doughty, B.; Calhoun, T. R.; Ahmadi, M.; Ievlev, A. V.; Jesse, S. et al. Chemical nature of ferroelastic twin domains in CH3NH3PbI3 perovskite. Nat. Mater. 2018, 17, 1013–1019.
Zhang, L. H.; Zhang, X.; Lu, G. Band alignment in two-dimensional halide perovskite heterostructures: Type I or type II. J. Phys. Chem. Lett. 2020, 11, 2910–2916.
Flores-Livas, J. A.; Tomerini, D.; Amsler, M.; Boziki, A.; Rothlisberger, U.; Goedecker, S. Emergence of hidden phases of methylammonium lead iodide (CH3NH3PbI3) upon Compression. Phys. Rev. Mater. 2018, 2, 085201.
Grishko, A. Y.; Petrov, A. A.; Goodilin, E. A.; Tarasov, A. B. Patterned films of a hybrid lead halide perovskite grown using space-confined conversion of metallic lead by reactive polyiodide melts. RSC Adv. 2019, 9, 37079–37081.
Grishko, A. Y.; Eliseev, A. A.; Goodilin, E. A.; Tarasov, A. B. Measure is treasure: Proper iodine vapor treatment as a new method of morphology improvement of lead-halide perovskite films. Chem. Mater. 2020, 32, 9140–9146.
Klein, J. R.; Flender, O.; Scholz, M.; Oum, K.; Lenzer, T. Charge carrier dynamics of methylammonium lead iodide: From PbI2-rich to low-dimensional broadly emitting perovskites. Phys. Chem. Chem. Phys. 2016, 18, 10800–10808.
Khlyabich, P. P.; Loo, Y. L. Crystalline intermediates and their transformation kinetics during the formation of methylammonium lead halide perovskite thin films. Chem. Mater. 2016, 28, 9041–9048.
Petrov, A. A.; Belich, N. A.; Grishko, A. Y.; Stepanov, N. M.; Dorofeev, S. G.; Maksimov, E. G.; Shevelkov, A. V.; Zakeeruddin, S. M.; Graetzel, M.; Tarasov, A. B. et al. A new formation strategy of hybrid perovskites via room temperature reactive polyiodide melts. Mater. Horiz. 2017, 4, 625–632.
Walsh, A.; Scanlon, D. O.; Chen, S. Y.; Gong, X. G.; Wei, S. H. Self-regulation mechanism for charged point defects in hybrid halide perovskites. Angew. Chem., Int. Ed. 2015, 54, 1791–1794.
Xiao, Z. G.; Yuan, Y. B.; Shao, Y. C.; Wang, Q.; Dong, Q. F.; Bi, C.; Sharma, P.; Gruverman, A.; Huang, J. S. Giant switchable photovoltaic effect in organometal trihalide perovskite devices. Nat. Mater. 2015, 14, 193–198.
Huang, X. F.; Chen, R. H.; Deng, G. C.; Han, F. M.; Ruan, P. P.; Cheng, F. W.; Yin, J.; Wu, B. H.; Zheng, N. F. Methylamine-dimer-induced phase transition toward MAPbI3 films and high-efficiency perovskite solar modules. J. Am. Chem. Soc. 2020, 142, 6149–6157.
Dastidar, S.; Hawley, C. J.; Dillon, A. D.; Gutierrez-Perez, A. D.; Spanier, J. E.; Fafarman, A. T. Quantitative phase-change thermodynamics and metastability of perovskite-phase cesium lead iodide. J. Phys. Chem. Lett. 2017, 8, 1278–1282.
Domanski, K.; Roose, B.; Matsui, T.; Saliba, M.; Turren-Cruz, S. H.; Correa-Baena, J. P.; Carmona, C. R.; Richardson, G.; Foster, J. M.; De Angelis, F. et al. Migration of cations induces reversible performance losses over day/night cycling in perovskite solar cells. Energy Environ. Sci. 2017, 10, 604–613.
Krywka, C.; Keckes, J.; Storm, S.; Buffet, A.; Roth, S. V.; Döhrmann, R.; Müller, M. Nanodiffraction at MINAXS (P03) Beamline of PETRA III. J. Phys. :Conf. Ser. 2013, 425, 072021.
Buffet, A.; Rothkirch, A.; Döhrmann, R.; Körstgens, V.; Abul Kashem, M. M.; Perlich, J.; Herzog, G.; Schwartzkopf, M.; Gehrke, R.; Müller-Buschbaum, P. et al. P03, the microfocus and nanofocus X-Ray scattering (MiNaXS) beamline of the PETRA III storage ring: The microfocus endstation. J. Synchrotron Rad. 2012, 19, 647–653.
Benecke, G.; Wagermaier, W.; Li, C.; Schwartzkopf, M.; Flucke, G.; Hoerth, R.; Zizak, I.; Burghammer, M.; Metwalli, E.; Müller-Buschbaum, P. et al. A customizable software for fast reduction and analysis of large X-ray scattering data sets: Applications of the new DPDAK package to small-angle X-ray scattering and grazing-incidence small-angle X-ray scattering. J. Appl. Cryst. 2014, 47, 1797–1803.