AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Thermodynamically controllable synthesis of ZIF-8 exposing different facets and their applications in single atom catalytic oxygen reduction reactions

Runze Ma1,§Qiheng Li2,§Jun Yan1 ( )Yu Tao1Shouyao Hu1Donghao Liu1Jiaxin Gong1Yu Xiong1( )
College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing 100083, China
Runze Ma and Qiheng Li contributed equally to this work.
Show Author Information

Graphical Abstract

ZIF-8 with different faces is synthesized via a thermodynamically strategy, and single atom catalysts with different morphology maintain the unsaturated sites from ZIF-8 and thus show different catalytic properties.

Abstract

The development of thermodynamically controllable synthetic strategy to manipulate the morphology of ZIF-8 without capping agent is essential to help understanding their facet effect and the structure-activity relationship of single atom catalysts derived from ZIF-8. Here, we prepared ZIF-8 with different morphologies (cube, truncated rhombododecahedral and rhombododecahedral) and thus area ratio of exposed {100}, {110} facets by a thermodynamically controllable synthetic strategy. When the reaction proceeds under room temperature (30 °C), the assembling of ZIF-8 followed an area-reducing layered growth mode, while switched to an integral layered growth mode at lower temperature –40 °C. Moreover, this strategy also works to obtain ZIF-8 encapsulated with metal precursors (Fe(acac)3, Cu(acac)2 and Co(acac)2). Single Fe atom anchored on nitrogen doped carbon catalysts (SA-Fe/CN) derived from Fe-ZIF-8 retain their original morphologies and the unsaturated surface-active sites on {100} facet, which further displays different catalytic performance towards oxygen reduction reaction (ORR). This work not only reveals the different growth pattern of ZIF-8, but also points out a new direction for designing and synthesizing MOFs with different morphology rationally.

Electronic Supplementary Material

Download File(s)
12274_2023_5655_MOESM1_ESM.pdf (3 MB)

References

[1]

Yang, L.; Zeng, X. F.; Wang, W. C.; Cao, D. P. Recent progress in MOF-derived, heteroatom-doped porous carbons as highly efficient electrocatalysts for oxygen reduction reaction in fuel cells. Adv. Funct. Mater. 2018, 28, 1704537.

[2]

Tian, J.; Morozan, A.; Sougrati, M. T.; Lefevre, M.; Chenitz, R.; Dodelet, J. P.; Jones, D.; Jaouen, F. Optimized synthesis of Fe/N/C cathode catalysts for PEM fuel cells: A matter of iron-ligand coordination strength. Angew. Chem., Int. Ed. 2013, 52, 6867–6870.

[3]

Zhu, P.; Xiong, X.; Wang, D. S. Regulations of active moiety in single atom catalysts for electrochemical hydrogen evolution reaction. Nano Res. 2022, 15, 5792–5815.

[4]
Wang, H.; Hao, Y. N.; Sun, Y. J.; Pan, J. Y.; Hu, F.; Kai, D.; Peng, S. J. Size control of Zn, N-doped carbon supported copper nanoparticles for effective and selective CO2 electroreduction. Catal. Lett., in press, DOI: 10.1007/s10562-022-04125-w.
[5]

Chen, L. L.; Zhang, Y. L.; Dong, L. L.; Yang, W. X.; Liu, X. J.; Long, L.; Liu, C. Y.; Dong, S. J.; Jia, J. B. Synergistic effect between atomically dispersed Fe and Co metal sites for enhanced oxygen reduction reaction. J. Mater. Chem. A 2020, 8, 4369–4375.

[6]

Zheng, Y.; Qiao, S. Z. Metal-organic framework assisted synthesis of single-atom catalysts for energy applications. Natl. Sci. Rev. 2018, 5, 626–627.

[7]

Zitolo, A.; Ranjbar-Sahraie, N.; Mineva, T.; Li, J. K.; Jia, Q. Y.; Stamatin, S.; Harrington, G. F.; Lyth, S. M.; Krtil, P.; Mukerjee, S. et al. Identification of catalytic sites in cobalt-nitrogen-carbon materials for the oxygen reduction reaction. Nat. Commun. 2017, 8, 957.

[8]

Han, X. P.; Ling, X. F.; Wang, Y.; Ma, T. Y.; Zhong, C.; Hu, W. B.; Deng, Y. D. Generation of nanoparticle, atomic-cluster, and single-atom cobalt catalysts from zeolitic imidazole frameworks by spatial isolation and their use in zinc-air batteries. Angew. Chem., Int. Ed. 2019, 58, 5359–5364.

[9]

He, T.; Chen, S. M.; Ni, B.; Gong, Y.; Wu, Z.; Song, L.; Gu, L.; Hu, W. P.; Wang, X. Zirconium-porphyrin-based metal-organic framework hollow nanotubes for immobilization of noble-metal single atoms. Angew. Chem., Int. Ed. 2018, 57, 3493–3498.

[10]

Park, K. S.; Ni, Z.; Côté, A. P.; Choi, J. Y.; Huang, R. D.; Uribe-Romo, F. J.; Chae, H. K.; O'Keeffe, M.; Yaghi, O. M. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc. Natl. Acad. Sci. USA 2006, 103, 10186–10191.

[11]

Zheng, X. B.; Li, B. B.; Wang, Q. S.; Wang, D. S.; Li, Y. D. Emerging low-nuclearity supported metal catalysts with atomic level precision for efficient heterogeneous catalysis. Nano Res. 2022, 15, 7806–7839.

[12]

Li, W. H.; Yang, J. R.; Wang, D. S. Long-range interactions in diatomic catalysts boosting electrocatalysis. Angew. Chem., Int. Ed. 2022, 61, e202213318.

[13]

Tabassum, H.; Guo, W. H.; Meng, W.; Mahmood, A.; Zhao, R.; Wang, Q. F.; Zou, R. Q. Metal-organic frameworks derived cobalt phosphide architecture encapsulated into B/N co-doped graphene nanotubes for all pH value electrochemical hydrogen evolution. Adv. Energy Mater. 2017, 7, 1601671.

[14]

Qin, J. Y.; Liu, H.; Zou, P. C.; Zhang, R.; Wang, C. Y.; Xin, H. L. Altering ligand fields in single-atom sites through second-shell anion modulation boosts the oxygen reduction reaction. J. Am. Chem. Soc. 2022, 144, 2197–2207.

[15]

Cheng, Y. H.; Guo, J. N.; Huang, Y.; Liao, Z. J.; Xiang, Z. H. Ultrastable hydrogen evolution electrocatalyst derived from phosphide postmodified metal-organic frameworks. Nano Energy 2017, 35, 115–120.

[16]

Luo, Z. X.; Zhao, G. Q.; Pan, H. G.; Sun, W. P. Strong metal-support interaction in heterogeneous catalysts. Adv. Energy Mater. 2022, 12, 2201395.

[17]

Xie, X. Y.; Shang, L.; Xiong, X. Y.; Shi, R.; Zhang, T. R. Fe single-atom catalysts on MOF-5 derived carbon for efficient oxygen reduction reaction in proton exchange membrane fuel cells. Adv. Energy Mater. 2022, 12, 2102688.

[18]

Abdel-Mageed, A. M.; Rungtaweevoranit, B.; Parlinska-Wojtan, M.; Pei, X. K.; Yaghi, O. M.; Behm, R. J. Highly active and stable single-atom Cu catalysts supported by a metal-organic framework. J. Am. Chem. Soc. 2019, 141, 5201–5210.

[19]

Li, R. Z.; Wang, D. S. Understanding the structure-performance relationship of active sites at atomic scale. Nano Res. 2022, 15, 6888–6923.

[20]

Sun, X. H.; Sun, L. A.; Li, G. N.; Tuo, Y. X.; Ye, C. L.; Yang, J. R.; Low, J.; Yu, X.; Bitter, J. H.; Lei, Y. P. et al. Phosphorus tailors the d-band center of copper atomic sites for efficient CO2 photoreduction under visible-light irradiation. Angew. Chem., Int. Ed. 2022, 61, e202207677.

[21]

Guan, J. P.; Wang, M.; Ma, R. Z.; Liu, Q.; Sun, X. T.; Xiong, Y.; Chen, X. Q. Single-atom Rh nanozyme: An efficient catalyst for highly sensitive colorimetric detection of acetylcholinesterase activity and adrenaline. Sensors Actuat. B: Chem. 2023, 375, 132972.

[22]

Zhang, X. Y.; Xiao, X. Z.; Chen, J.; Liu, Y. F.; Pan, H. G.; Sun, W. P.; Gao, M. X. Toward the fast and durable alkaline hydrogen oxidation reaction on ruthenium. Energy Environ. Sci. 2022, 15, 4511–4526.

[23]

Xiong, Y.; Sun, W. M.; Han, Y. H.; Xin, P. Y.; Zheng, X. S.; Yan, W. S.; Dong, J. C.; Zhang, J.; Wang, D. S.; Li. Y. D. Cobalt single atom site catalysts with ultrahigh metal loading for enhanced aerobic oxidation of ethylbenzene. Nano Res. 2021, 14, 2418–2423.

[24]

Zhang, Z. D.; Zhou, M.; Chen, Y. J.; Liu, S. J.; Wang, H. F.; Zhang, J.; Ji, S. F.; Wang, D. S.; Li, Y. D. Pd single-atom monolithic catalyst: Functional 3D structure and unique chemical selectivity in hydrogenation reaction. Sci. China Mater. 2021, 64, 1919–1929.

[25]

Zhang, B. X.; Zhang, B. H.; Zhao, G. Q.; Wang, J. M.; Liu, D. Q.; Chen, Y. P.; Xia, L. X.; Gao, M. X.; Liu, Y. F.; Sun, W. P. et al. Atomically dispersed chromium coordinated with hydroxyl clusters enabling efficient hydrogen oxidation on ruthenium. Nat. Commun. 2022, 13, 5894.

[26]

Yang, J. R.; Li, W. H.; Xu, K. N.; Tan, S. D.; Wang, D. S.; Li, Y. D. Regulating the tip effect on single-atom and cluster catalysts: Forming reversible oxygen species with high efficiency in chlorine evolution reaction. Angew. Chem., Int. Ed. 2022, 61, e202200366.

[27]

Zhuang, Z. C.; Xia, L. X.; Huang, J. Z.; Zhu, P.; Li, Y.; Ye, C. L.; Xia, M. G.; Yu, R. H.; Lang, Z. Q.; Zhu, J. X. et al. Continuous modulation of electrocatalytic oxygen reduction activities of single-atom catalysts through p-n junction rectification. Angew. Chem., Int. Ed. 2023, 62, e202212335.

[28]

Jing, H. Y.; Zhu, P.; Zheng, X. B.; Zhang, Z. D.; Wang, D. S.; Li, Y. D. Theory-oriented screening and discovery of advanced energy transformation materials in electrocatalysis. Adv. Powder Mater. 2022, 1, 100013.

[29]

Zhang, S. L.; Ao, X.; Huang, J.; Wei, B.; Zhai, Y. L.; Zhai, D.; Deng, W. Q.; Su, C. L.; Wang, D. S.; Li, Y. D. Isolated single-atom Ni-N5 catalytic site in hollow porous carbon capsules for efficient lithium-sulfur batteries. Nano Lett. 2021, 21, 9691–9698.

[30]

Wang, Y.; Zheng, M.; Li, Y. R.; Ye, C. L.; Chen, J.; Ye, J. Y.; Zhang, Q. H.; Li, J.; Zhou, Z. Y.; Fu, X. Z. et al. p-d orbital hybridization induced by a monodispersed Ga site on a Pt3Mn nanocatalyst boosts ethanol electrooxidation. Angew. Chem., Int. Ed. 2022, 61, e202115735.

[31]

Xiao, M. L.; Zhu, J. B.; Li, G. R.; Li, N.; Li, S.; Cano, Z. P.; Ma, L.; Cui, P. X.; Xu, P.; Jiang, G. P. et al. A single-atom iridium heterogeneous catalyst in oxygen reduction reaction. Angew. Chem., Int. Ed. 2019, 58, 9640–9645.

[32]

Yu, D. S.; Ma, Y. C.; Hu, F.; Lin, C. C.; Li, L. L.; Chen, H. Y.; Han, X. P.; Peng, S. J. Dual-sites coordination engineering of single atom catalysts for flexible metal-air batteries. Adv. Energy Mater. 2021, 11, 2101242.

[33]

Zhang, H. G.; Hwang, S.; Wang, M. Y.; Feng, Z. X.; Karakalos, S.; Luo, L. L.; Qiao, Z.; Xie, X. H.; Wang, C. M.; Su, D. et al. Single atomic iron catalysts for oxygen reduction in acidic media: Particle size control and thermal activation. J. Am. Chem. Soc. 2017, 139, 14143–14149.

[34]

Xie, X. Y.; Peng, L. S.; Yang, H. Z.; Waterhouse, G. I. N.; Shang, L.; Zhang, T. R. MIL-101-derived mesoporous carbon supporting highly exposed Fe single-atom sites as efficient oxygen reduction reaction catalysts. Adv. Mater. 2021, 33, 2101038.

[35]

Zou, L. L.; Wei, Y. S.; Hou, C. C.; Li, C. X.; Xu, Q. Single-atom catalysts derived from metal-organic frameworks for electrochemical applications. Small 2021, 17, 2004809.

[36]

Rong, X.; Wang, H. J.; Lu, X. L.; Si, R.; Lu, T. B. Controlled synthesis of a vacancy-defect single-atom catalyst for boosting CO2 electroreduction. Angew. Chem., Int. Ed. 2020, 59, 1961–1965.

[37]

Xiong, Y.; Dong, J. C.; Huang, Z. Q.; Xin, P. Y.; Chen, W. X.; Wang, Y.; Li, Z.; Jin, Z.; Xing, W. et al. Single-atom Rh/N-doped carbon electrocatalyst for formic acid oxidation. Nat. Nanotechnol. 2020, 15, 390–397.

[38]

Yuan, S.; Zhang, J. W.; Hu, L. Y.; Li, J. N.; Li, S. W.; Gao, Y. N.; Zhang, Q. H.; Gu, L.; Yang, W. X.; Feng, X. et al. Decarboxylation-induced defects in MOF-derived single cobalt Atom@Carbon electrocatalysts for efficient oxygen reduction. Angew. Chem., Int. Ed. 2021, 60, 21685–21690.

[39]

Jiao, L.; Yang, W. J.; Wan, G.; Zhang, R.; Zheng, X. S.; Zhou, H.; Yu, S. H.; Jiang, H. L. Single-atom electrocatalysts from multivariate metal-organic frameworks for highly selective reduction of CO2 at low pressures. Angew. Chem., Int. Ed. 2020, 59, 20589–20595.

[40]

Cheng, X. M.; Dao, X. Y.; Wang, S. Q.; Zhao, J.; Sun, W. Y. Enhanced photocatalytic CO2 reduction activity over NH2-MIL-125(Ti) by facet regulation. ACS Catal. 2021, 11, 650–658.

[41]

Cheng, X. M.; Gu, Y. M.; Zhang, X. Y.; Dao, X. Y.; Wang, S. Q.; Ma, J.; Zhao, J.; Sun, W. Y. Crystallographic facet heterojunction of MIL-125-NH2(Ti) for carbon dioxide photoreduction. Appl. Catal. B:Environ. 2021, 298, 120524.

[42]

Datta, S. J.; Mayoral, A.; Bettahalli, N. M. S.; Bhatt, P. M.; Karunakaran, M.; Carja, I. D.; Fan, D.; Mileo, P. G. M.; Semino, R.; Maurin, G. et al. Rational design of mixed-matrix metal-organic framework membranes for molecular separations. Science 2022, 376, 1080–1087.

[43]

Liu, X. Y.; Lo, W. S.; Wu, C. H.; Williams, B. P.; Luo, L. S.; Li, Y.; Chou, L. Y.; Lee, Y.; Tsung, C. K. Tuning metal-organic framework nanocrystal shape through facet-dependent coordination. Nano Lett. 2020, 20, 1774–1780.

[44]

Pan, Y. C.; Heryadi, D.; Zhou, F.; Zhao, L.; Lestari, G.; Su, H. B.; Lai, Z. P. Tuning the crystal morphology and size of zeolitic imidazolate framework-8 in aqueous solution by surfactants. CrystEngComm 2011, 13, 6937–6940.

[45]

Zheng, G. C.; Chen, Z. W.; Sentosun, K.; Pérez-Juste, I.; Bals, S.; Liz-Marzán, L. M.; Pastoriza-Santos, I.; Pérez-Juste, J.; Hong, M. Shape control in ZIF-8 nanocrystals and metal nanoparticles@ZIF-8 heterostructures. Nanoscale 2017, 9, 16645–16651.

[46]

Li, M. P.; Lv, Q.; Si, W. Y.; Hou, Z. F.; Huang, C. S. Sp-hybridized nitrogen as new anchoring sites of iron single atoms to boost the oxygen reduction reaction. Angew. Chem., Int. Ed. 2022, 61, e202208238.

[47]

Liu, K.; Fu, J. W.; Lin, Y. Y.; Luo, T.; Ni, G. H.; Li, H. M.; Lin, Z.; Liu, M. Insights into the activity of single-atom Fe-N-C catalysts for oxygen reduction reaction. Nat. Commun. 2022, 13, 2075.

[48]

Li, Q. H.; Chen, W. X.; Xiao, H.; Gong, Y.; Li, Z.; Zheng, L. R.; Zheng, X. S.; Yan, W. S.; Cheong, W. C.; Shen, R. A. et al. Fe isolated single atoms on S, N codoped carbon by copolymer pyrolysis strategy for highly efficient oxygen reduction reaction. Adv. Mater. 2018, 30, 1800588.

[49]

Cheng, Y.; Zhao, S. Y.; Johannessen, B.; Veder, J. P.; Saunders, M.; Rowles, M. R.; Cheng, M.; Liu, C.; Chisholm, M. F.; De Marco, R. et al. Atomically dispersed transition metals on carbon nanotubes with ultrahigh loading for selective electrochemical carbon dioxide reduction. Adv. Mater. 2018, 30, 1706287.

[50]

Xiong, Y.; Wang, S. B.; Chen, W. X.; Zhang, J.; Li, Q. H.; Hu, H. S.; Zheng, L. R.; Yan, W. S.; Gu, L.; Wang, D. S. et al. Construction of dual-active-site copper catalyst containing both Cu-N3 and Cu-N4 sites. Small 2021, 17, 2006834.

[51]

Xiong, Y.; Li, H. C.; Liu, C. W.; Zheng, L. R.; Liu, C.; Wang, J. O.; Liu, S. J.; Han, Y. H.; Gu, L.; Qian, J. S. et al. Single-atom Fe catalysts for Fenton-like reactions: Roles of different N species. Adv. Mater. 2022, 34, 2110653.

[52]

Zhao, M. Q.; Liu, H. R.; Zhang, H. W.; Chen, W.; Sun, H. Q.; Wang, Z. H.; Zhang, B.; Song, L.; Yang, Y.; Ma, C. et al. A pH-universal ORR catalyst with single-atom iron sites derived from a double-layer MOF for superior flexible quasi-solid-state rechargeable Zn-air batteries. Energy Environ. Sci. 2021, 14, 6455–6463.

[53]

Ao, X.; Ding, Y.; Nam, G.; Soule, L.; Jing, P. P.; Zhao, B. T.; Hwang, J. Y.; Jang, J. H.; Wang, C. D.; Liu, M. L. A single-atom Fe-N-C catalyst with ultrahigh utilization of active sites for efficient oxygen reduction. Small 2022, 18, 2203326.

[54]

Bennett, T. D.; Cheetham, A. K.; Fuchs, A. H.; Coudert, F. X. Interplay between defects, disorder and flexibility in metal-organic frameworks. Nat. Chem. 2017, 9, 11–16.

Nano Research
Pages 9618-9624
Cite this article:
Ma R, Li Q, Yan J, et al. Thermodynamically controllable synthesis of ZIF-8 exposing different facets and their applications in single atom catalytic oxygen reduction reactions. Nano Research, 2023, 16(7): 9618-9624. https://doi.org/10.1007/s12274-023-5655-5
Topics:

1347

Views

9

Crossref

8

Web of Science

8

Scopus

1

CSCD

Altmetrics

Received: 28 January 2023
Revised: 06 March 2023
Accepted: 08 March 2023
Published: 28 April 2023
© Tsinghua University Press 2023
Return