Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Vanadium oxides have attracted extensive interest as electrode materials for many electrochemical energy storage devices owing to the features of abundant reserves, low cost, and variable valence. Based on the in-depth understanding of the energy storage mechanisms and reasonable design strategies, the performances of vanadium oxides as electrodes for batteries have been significantly optimized. Compared to crystalline vanadium oxides, amorphous vanadium oxides (AVOs) show many unique properties, including large specific surface area, excellent electrochemical stability, lots of defects and active sites, fast ion kinetics, and high elasticity. This review gives a comprehensive overview of the recent progress on AVOs for different energy storage systems, such as alkali metal ion batteries, multivalent ion batteries, and supercapacitors with a special focus on the preparation strategies. The basic mechanisms for energy storage performance improvements of AVOs as compared to their crystalline counterparts are also introduced. Finally, challenges faced by AVOs are discussed and future development prospects are also proposed. This review aims to provide a comprehensive knowledge of AVOs and is expected to promote the development of high-performance electrodes for batteries.
Dunn, B.; Kamath, H.; Tarascon, J. M. Electrical energy storage for the grid: A battery of choices. Science 2011, 334, 928–935.
Zheng, X. B.; Li, B. B.; Wang, Q. S.; Wang, D. S.; Li, Y. D. Emerging low-nuclearity supported metal catalysts with atomic level precision for efficient heterogeneous catalysis. Nano Res. 2022, 15, 7806–7839.
Zhuang, Z. C.; Xia, L. X.; Huang, J. Z.; Zhu, P.; Li, Y.; Ye, C. L.; Xia, M. G.; Yu, R. H.; Lang, Z. Q.; Zhu, J. X. et al. Continuous modulation of electrocatalytic oxygen reduction activities of single-atom catalysts through p−n junction rectification. Angew. Chem., Int. Ed. 2023, 62, e202212335.
Zhang, S. L.; Ao, X.; Huang, J.; Wei, B.; Zhai, Y. L.; Zhai, D.; Deng, W. Q.; Su, C. L.; Wang, D. S.; Li, Y. D. Isolated single-atom Ni-N5 catalytic site in hollow porous carbon capsules for efficient lithium-sulfur batteries. Nano Lett. 2021, 21, 9691–9698.
Zhuang, Z. C.; Li, Y. H.; Yu, R. H.; Xia, L. X.; Yang, J. R.; Lang, Z. Q.; Zhu, J. X.; Huang, J. Z.; Wang, J. O.; Wang, Y. et al. Reversely trapping atoms from a perovskite surface for high-performance and durable fuel cell cathodes. Nat. Catal. 2022, 5, 300–310.
Min, X.; Xiao, J.; Fang, M. H.; Wang, W.; Zhao, Y. J.; Liu, Y. G.; Abdelkader, A. M.; Xi, K.; Kumar, R. V.; Huang, Z. H. Potassium-ion batteries: Outlook on present and future technologies. Energy Environ. Sci. 2021, 14, 2186–2243.
Cui, T. T.; Wang, Y. P.; Ye, T.; Wu, J.; Chen, Z. Q.; Li, J.; Lei, Y. P.; Wang, D. S.; Li, Y. D. Engineering dual single-atom sites on 2D ultrathin N-doped carbon nanosheets attaining ultra-low-temperature zinc-air battery. Angew. Chem., Int. Ed. 2022, 61, e202115219.
Zhang, E. H.; Hu, X.; Meng, L. Z.; Qiu, M.; Chen, J. X.; Liu, Y. J.; Liu, G. Y.; Zhuang, Z. C.; Zheng, X. B.; Zheng, L. R. et al. Single-atom yttrium engineering janus electrode for rechargeable Na-S batteries. J. Am. Chem. Soc. 2022, 144, 18995–19007.
Boyd, S.; Augustyn, V. Transition metal oxides for aqueous sodium-ion electrochemical energy storage. Inorg. Chem. Front. 2018, 5, 999–1015.
Poizot, P.; Laruelle, S.; Grugeon, S.; Dupont, L.; Tarascon, J. M. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 2000, 407, 496–499.
Gao, R. M.; Zheng, Z. J.; Wang, P. F.; Wang, C. Y.; Ye, H.; Cao, F. F. Recent advances and prospects of layered transition metal oxide cathodes for sodium-ion batteries. Energy Storage Mater. 2020, 30, 9–26.
Zhang, M. H.; Kitchaev, D. A.; Lebens-Higgins, Z.; Vinckeviciute, J.; Zuba, M.; Reeves, P. J.; Grey, C. P.; Whittingham, M. S.; Piper, L. F. J.; Van der Ven, A. et al. Pushing the limit of 3d transition metal-based layered oxides that use both cation and anion redox for energy storage. Nat. Rev. Mater. 2022, 7, 522–540.
Xu, X. M.; Xiong, F. Y.; Meng, J. S.; Wang, X. P.; Niu, C. J.; An, Q. Y.; Mai, L. Q. Vanadium-based nanomaterials: A promising family for emerging metal-ion batteries. Adv. Funct. Mater. 2020, 30, 1904398.
Li, S. D.; Zhuang, Z. C.; Xia, L. X.; Zhu, J. X.; Liu, Z. A.; He, R. H.; Luo, W.; Huang, W. Z.; Shi, C. W.; Zhao, Y. et al. Improving the electrophilicity of nitrogen on nitrogen-doped carbon triggers oxygen reduction by introducing covalent vanadium nitride. Sci. China Mater. 2023, 66, 160–168.
Rui, X. H.; Lu, Z. Y.; Yu, H.; Yang, D.; Hng, H. H.; Lim, T. M.; Yan, Q. Y. Ultrathin V2O5 nanosheet cathodes: Realizing ultrafast reversible lithium storage. Nanoscale 2013, 5, 556–560.
Xia, C.; Lin, Z. F.; Zhou, Y. G.; Zhao, C.; Liang, H. F.; Rozier, P.; Wang, Z. G.; Alshareef, H. N. Large intercalation pseudocapacitance in 2D VO2 (B): Breaking through the kinetic barrier. Adv. Mater. 2018, 30, 1803594.
Luo, H.; Wang, B.; Wang, F.; Yang, J.; Wu, F. D.; Ning, Y.; Zhou, Y.; Wang, D. L.; Liu, H. K.; Dou, S. X. Anodic oxidation strategy toward structure-optimized V2O3 cathode via electrolyte regulation for Zn-ion storage. ACS Nano 2020, 14, 7328–7337.
Meng, W.; Pigliapochi, R.; Bayley, P. M.; Pecher, O.; Gaultois, M. W.; Seymour, I. D.; Liang, H. P.; Xu, W. Q.; Wiaderek, K. M.; Chapman, K. W. et al. Unraveling the complex delithiation and lithiation mechanisms of the high capacity cathode material V6O13. Chem. Mater. 2017, 29, 5513–5524.
Zhao, D.; Zheng, L. R.; Xiao, Y.; Wang, X.; Cao, M. H. Lithium storage in microstructures of amorphous mixed-valence vanadium oxide as anode materials. ChemSusChem 2015, 8, 2212–2222.
Wang, X.; Xi, B. J.; Ma, X. J.; Feng, Z. Y.; Jia, Y. X.; Feng, J. K.; Qian, Y. T.; Xiong, S. L. Boosting zinc-ion storage capability by effectively suppressing vanadium dissolution based on robust layered barium vanadate. Nano Lett. 2020, 20, 2899–2906.
Liu, X.; Xu, G. B.; Zhang, Q.; Huang, S. J.; Li, L.; Wei, X. L.; Cao, J. X.; Yang, L. W.; Chu, P. K. Ultrathin hybrid nanobelts of single-crystalline VO2 and poly(3,4-ethylenedioxythiophene) as cathode materials for aqueous zinc ion batteries with large capacity and high-rate capability. J. Power Sources 2020, 463, 228223.
Le Van, K.; Groult, H.; Mantoux, A.; Perrigaud, L.; Lantelme, F.; Lindström, R.; Badour-Hadjean, R.; Zanna, S.; Lincot, D. Amorphous vanadium oxide films synthesised by ALCVD for lithium rechargeable batteries. J. Power Sources 2006, 160, 592–601.
Zhuang, Z. C.; Li, Y.; Li, Y. H.; Huang, J. Z.; Wei, B.; Sun, R.; Ren, Y. J.; Ding, J.; Zhu, J. X.; Lang, Z. Q. et al. Atomically dispersed nonmagnetic electron traps improve oxygen reduction activity of perovskite oxides. Energy Environ. Sci. 2021, 14, 1016–1028.
Yan, S. H.; Abhilash, K. P.; Tang, L. Y.; Yang, M.; Ma, Y. F.; Xia, Q. Y.; Guo, Q. B.; Xia, H. Research advances of amorphous metal oxides in electrochemical energy storage and conversion. Small 2019, 15, 1804371.
Wei, Z. X.; Wang, D. X.; Yang, X.; Wang, C. Z.; Chen, G.; Du, F. From crystalline to amorphous: An effective avenue to engineer high-performance electrode materials for sodium-ion batteries. Adv. Mater. Interfaces 2018, 5, 1800639.
Charles, D. S.; Feygenson, M.; Page, K.; Neuefeind, J.; Xu, W. Q.; Teng, X. W. Structural water engaged disordered vanadium oxide nanosheets for high capacity aqueous potassium-ion storage. Nat. Commun. 2017, 8, 15520.
Wang, X. L.; Han, W. Q.; Chen, H. Y.; Bai, J. M.; Tyson, T. A.; Yu, X. Q.; Wang, X. J.; Yang, X. Q. Amorphous hierarchical porous GeOx as high-capacity anodes for Li ion batteries with very long cycling life. J. Am. Chem. Soc. 2011, 133, 20692–20695.
Wang, X.; Li, Y. G.; Wang, S.; Zhou, F.; Das, P.; Sun, C. L.; Zheng, S. H.; Wu, Z. S. 2D amorphous V2O5/graphene heterostructures for high-safety aqueous Zn-ion batteries with unprecedented capacity and ultrahigh rate capability. Adv. Energy Mater. 2020, 10, 2000081.
Hu, Y. J.; Zhang, Y. M.; Bao, S. X.; Liu, T. Effects of the mineral phase and valence of vanadium on vanadium extraction from stone coal. Int. J. Miner. Metall. Mater. 2012, 19, 893–898.
Tang, H.; Peng, Z.; Wu, L.; Xiong, F. Y.; Pei, C. Y.; An, Q. Y.; Mai, L. Q. Vanadium-based cathode materials for rechargeable multivalent batteries: Challenges and opportunities. Electrochem. Energy Rev. 2018, 1, 169–199.
Liu, C. F.; Neale, Z.; Zheng, J. Q.; Jia, X. X.; Huang, J. J.; Yan, M. Y.; Tian, M.; Wang, M. S.; Yang, J. H.; Cao, G. Z. Expanded hydrated vanadate for high-performance aqueous zinc-ion batteries. Energy Environ. Sci. 2019, 12, 2273–2285.
Song, Y.; Liu, T. Y.; Yao, B.; Kou, T. Y.; Feng, D. Y.; Liu, X. X.; Li, Y. Amorphous mixed-valence vanadium oxide/exfoliated carbon cloth structure shows a record high cycling stability. Small 2017, 13, 1700067.
Zhang, S. S.; Liu, Z. J.; Li, L.; Tang, Y. D.; Li, S. K.; Huang, H. T.; Zhang, H. Y. Electrochemical activation strategies of a novel high entropy amorphous V-based cathode material for high-performance aqueous zinc-ion batteries. J. Mater. Chem. A 2021, 9, 18488–18497.
Li, Q.; Xu, Y. X.; Zheng, S. S.; Guo, X. T.; Xue, H. G.; Pang, H. Recent progress in some amorphous materials for supercapacitors. Small 2018, 14, 1800426.
Tepavcevic, S.; Xiong, H.; Stamenkovic, V. R.; Zuo, X. B.; Balasubramanian, M.; Prakapenka, V. B.; Johnson, C. S.; Rajh, T. Nanostructured bilayered vanadium oxide electrodes for rechargeable sodium-ion batteries. ACS Nano 2012, 6, 530–538.
Cai, Y.; Chua, R.; Huang, S. Z.; Ren, H.; Srinivasan, M. Amorphous manganese dioxide with the enhanced pseudocapacitive performance for aqueous rechargeable zinc-ion battery. Chem. Eng. J. 2020, 396, 125221.
Zhuang, Z. C.; Huang, J. Z.; Li, Y.; Zhou, L.; Mai, L. Q. The holy grail in platinum-free electrocatalytic hydrogen evolution: Molybdenum-based catalysts and recent advances. ChemElectroChem 2019, 6, 3570–3589.
Wei, S. Q.; Chen, S. M.; Su, X. Z.; Qi, Z. H.; Wang, C. D.; Ganguli, B.; Zhang, P. J.; Zhu, K. F.; Cao, Y. Y.; He, Q. et al. Manganese buffer induced high-performance disordered MnVO cathodes in zinc batteries. Energy Environ. Sci. 2021, 14, 3954–3964.
Liu, Z. H.; Du, Y.; Zhang, P. F.; Zhuang, Z. C.; Wang, D. S. Bringing catalytic order out of chaos with nitrogen-doped ordered mesoporous carbon. Matter 2021, 4, 3161–3194.
Medvedeva, J. E.; Buchholz, D. B.; Chang, R. P. H. Recent advances in understanding the structure and properties of amorphous oxide semiconductors. Adv. Electron. Mater. 2017, 3, 1700082.
Zhao, H. W.; Chen, X. J.; Wang, G. Z.; Qiu, Y. F.; Guo, L. Two-dimensional amorphous nanomaterials: Synthesis and applications. 2D Mater. 2019, 6, 032002.
Huang, H. M.; Liu, J. H.; Zhang, P.; Zhang, D. D.; Gao, F. M. Investigation on the simultaneous removal of fluoride, ammonia nitrogen and phosphate from semiconductor wastewater using chemical precipitation. Chem. Eng. J. 2017, 307, 696–706.
Kim, D.; Ryu, J. H. Amorphous V2O5 positive electrode materials by precipitation method in magnesium rechargeable batteries. Electron. Mater. Lett. 2019, 15, 415–420.
Chae, O. B.; Kim, J.; Park, I.; Jeong, H.; Ku, J. H.; Ryu, J. H.; Kang, K.; Oh, S. M. Reversible lithium storage at highly populated vacant sites in an amorphous vanadium pentoxide electrode. Chem. Mater. 2014, 26, 5874–5881.
Zhu, P.; Xiong, X.; Wang, D. S. Regulations of active moiety in single atom catalysts for electrochemical hydrogen evolution reaction. Nano Res. 2022, 15, 5792–5815.
Zhu, H.; Sun, S. H.; Hao, J. C.; Zhuang, Z. C.; Zhang, S. G.; Wang, T. D.; Kang, Q.; Lu, S. L.; Wang, X. F.; Lai, F. L. et al. A high-entropy atomic environment converts inactive to active sites for electrocatalysis. Energy Environ. Sci. 2023, 16, 619–628.
Xiong, Y.; Sun, W. M.; Han, Y. H.; Xin, P. Y.; Zheng, X. S.; Yan, W. S.; Dong, J. C.; Zhang, J.; Wang, D. S.; Li, Y. D. Cobalt single atom site catalysts with ultrahigh metal loading for enhanced aerobic oxidation of ethylbenzene. Nano Res. 2021, 14, 2418–2423.
Liu, Z. H.; Du, Y.; Yu, R. H.; Zheng, M. B.; Hu, R.; Wu, J. S.; Xia, Y. Y.; Zhuang, Z. C.; Wang, D. S. Tuning mass transport in electrocatalysis down to sub-5 nm through nanoscale grade separation. Angew. Chem., Int. Ed. 2023, 62, e202212653.
Chiku, M.; Takeda, H.; Matsumura, S.; Higuchi, E.; Inoue, H. Amorphous vanadium oxide/carbon composite positive electrode for rechargeable aluminum battery. ACS Appl. Mater. Interfaces 2015, 7, 24385–24389.
Qin, W.; Liu, Y.; Liu, X. Y.; Yang, G. W. Facile and scalable production of amorphous nickel borate for high performance hybrid supercapacitors. J. Mater. Chem. A 2018, 6, 19689–19695.
Luo, Y.; Wei, L. C.; Geng, H. B.; Zhang, Y. F.; Yang, Y.; Li, C. C. Amorphous bimetallic oxides Fe-V-O with tunable compositions toward rechargeable Zn-ion batteries with excellent low-temperature performance. ACS Appl. Mater. Interfaces 2020, 12, 11753–11760.
Uchaker, E.; Zheng, Y. Z.; Li, S.; Candelaria, S. L.; Hu, S.; Cao, G. Z. Better than crystalline: Amorphous vanadium oxide for sodium-ion batteries. J. Mater. Chem. A 2014, 2, 18208–18214.
Li, S. L.; Wei, X. J.; Chen, H. P.; Lai, G. Y.; Wang, X. P.; Zhang, S. J.; Wu, S. X.; Tang, W. T.; Lin, Z. Mixed-valent vanadium oxide cathode with ultrahigh rate capability for aqueous zinc-ion battery. J. Mater. Chem. A 2021, 9, 22392–22398.
Niu, C. J.; Huang, M.; Wang, P. Y.; Meng, J. S.; Liu, X.; Wang, X. P.; Zhao, K. N.; Yu, Y.; Wu, Y. Z.; Lin, C. et al. Carbon-supported and nanosheet-assembled vanadium oxide microspheres for stable lithium-ion battery anodes. Nano Res. 2016, 9, 128–138.
Jiang, W. J.; Zeng, W. Y.; Ma, Z. S.; Pan, Y.; Lin, J. G.; Lu, C. S. Advanced amorphous nanoporous stannous oxide composite with carbon nanotubes as anode materials for lithium-ion batteries. RSC Adv. 2014, 4, 41281–41286.
Deng, S. Z.; Yuan, Z. S.; Tie, Z. W.; Wang, C. D.; Song, L.; Niu, Z. Q. Electrochemically induced metal-organic-framework-derived amorphous V2O5 for superior rate aqueous zinc-ion batteries. Angew. Chem., Int. Ed. 2020, 59, 22002–22006.
Wang, X.; Zhang, Z. C. Y.; Huang, M.; Feng, J. K.; Xiong, S. L.; Xi, B. J. In-situ electrochemically activated vanadium oxide cathode for advanced aqueous Zn-ion batteries. Nano Lett. 2022, 22, 119–127.
Ju, B.; Song, H. J.; Yoon, H.; Kim, D. W. Amorphous hydrated vanadium oxide with enlarged interlayer spacing for aqueous zinc-ion batteries. Chem. Eng. J. 2021, 420, 130528.
Liu, W.; Liu, H.; Dang, L. N.; Zhang, H. X.; Wu, X. L.; Yang, B.; Li, Z. J.; Zhang, X. W.; Lei, L. C.; Jin, S. Amorphous cobalt-iron hydroxide nanosheet electrocatalyst for efficient electrochemical and photo-electrochemical oxygen evolution. Adv. Funct. Mater. 2017, 27, 1603904.
Schreckenbach, J. P.; Butte, D.; Marx, G.; Johnson, B. R.; Kriven, W. M. Electrosynthesis and microstructural characterization of anodic VOx films. J. Mater. Res. 2000, 15, 1483–1489.
Liu, S. K.; Tong, Z. Q.; Zhao, J. P.; Liu, X. S.; Wang, J.; Ma, X. X.; Chi, C. X.; Yang, Y.; Liu, X. X.; Li, Y. Rational selection of amorphous or crystalline V2O5 cathode for sodium-ion batteries. Phys. Chem. Chem. Phys. 2016, 18, 25645–25654.
Jeon, H.; Jeong, B.; Lee, J. K.; Kim, H. S.; Lee, S. H.; Lee, J. Improved specific capacitance of amorphous vanadium pentoxide in a nanoporous alumina template. Electrochem. Solid-State Lett. 2010, 13, A25–A28.
Wang, G.; Li, Q.; Gao, Y.; Gao, J. N.; Zhu, Y. Y.; Chao, Z. G. Influence of ball milling parameters on preparation of Ti50Cu23Ni20Sn7 amorphous alloys powder. Appl. Mech. Mater. 2011, 55–57, 819–824.
Niu, X. G.; Zhang, Y. C.; Tan, L. L.; Yang, Z.; Yang, J.; Liu, T.; Zeng, L.; Zhu, Y. J.; Guo, L. Amorphous FeVO4 as a promising anode material for potassium-ion batteries. Energy Storage Mater. 2019, 22, 160–167.
Arthur, T. S.; Kato, K.; Germain, J.; Guo, J. H.; Glans, P. A.; Liu, Y. S.; Holmes, D.; Fan, X. D.; Mizuno, F. Amorphous V2O5-P2O5 as high-voltage cathodes for magnesium batteries. Chem. Commun. 2015, 51, 15657–15660.
Mattelaer, F.; Geryl, K.; Rampelberg, G.; Dendooven, J.; Detavernier, C. Amorphous and crystalline vanadium oxides as high-energy and high-power cathodes for three-dimensional thin-film lithium ion batteries. ACS Appl. Mater. Interfaces 2017, 9, 13121–13131.
Huang, G. F.; Li, C. P.; Bai, J.; Sun, X. W.; Liang, H. O. Controllable-multichannel carbon nanofibers-based amorphous vanadium as binder-free and conductive-free electrode materials for supercapacitor. Int. J. Hydrogen Energy 2016, 41, 22144–22154.
Chen, S.; Jiang, H.; Cheng, Q. L.; Wang, G. C.; Petr, S.; Li, C. Z. Amorphous vanadium oxides with metallic character for asymmetric supercapacitors. Chem. Eng. J. 2021, 403, 126380.
Fan, L. L.; Li, X. F.; Yan, B.; Feng, J. M.; Xiong, D. B.; Li, D. J.; Gu, L.; Wen, Y. R.; Lawes, S.; Sun, X. L. Controlled SnO2 crystallinity effectively dominating sodium storage performance. Adv. Energy Mater. 2016, 6, 1502057.
Clites, M.; Hart, J. L.; Taheri, M. L.; Pomerantseva, E. Annealing-assisted enhancement of electrochemical stability of Na-preintercalated bilayered vanadium oxide electrodes in Na-ion batteries. ACS Appl. Energy Mater. 2020, 3, 1063–1075.
Semenenko, D. A.; Itkis, D. M.; Pomerantseva, E. A.; Goodilin, E. A.; Kulova, T. L.; Skundin, A. M.; Tretyakov, Y. D. LixV2O5 nanobelts for high capacity lithium-ion battery cathodes. Electrochem. Commun. 2010, 12, 1154–1157.
Cao, Z. Y.; Chu, H.; Zhang, H.; Ge, Y. C.; Clemente, R.; Dong, P.; Wang, L. P.; Shen, J. F.; Ye, M. X.; Ajayan, P. M. An in situ electrochemical oxidation strategy for formation of nanogrid-shaped V3O7·H2O with enhanced zinc storage properties. J. Mater. Chem. A 2019, 7, 25262–25267.
Merupo , V. I.; Velumani, S.; Oza, G.; Tabellout, M.; Bizarro, M.; Coste, S.; Kassiba, A. H. High energy ball-milling synthesis of nanostructured Ag-doped and BiVO4-based photocatalysts. ChemistrySelect 2016, 1, 1278–1286.
Xue, H. Y.; Zhang, H. Q.; Fricke, S.; Lüther, M.; Yang, Z. J.; Meng, A. L.; Bremser, W.; Li, Z. J. Scalable and energy-efficient synthesis of CoxP for overall water splitting in alkaline media by high energy ball milling. Sustain. Energ. Fuels 2020, 4, 1723–1729.
Zou, P. C.; Sui, Y. M.; Zhan, H. C.; Wang, C. Y.; Xin, H. L.; Cheng, H. M.; Kang, F. Y.; Yang, C. Polymorph evolution mechanisms and regulation strategies of lithium metal anode under multiphysical fields. Chem. Rev. 2021, 121, 5986–6056.
Huang, B.; Pan, Z. F.; Su, X. Y.; An, L. Recycling of lithium-ion batteries: Recent advances and perspectives. J. Power Sources 2018, 399, 274–286.
Zhou, G. M.; L. F.; Cheng, H. M. Progress in flexible lithium batteries and future prospects. Energy Environ. Sci. 2014, 7, 1307–1338.
Li, J. L.; Fleetwood, J.; Hawley, W. B.; Kays, W. From materials to cell: State-of-the-art and prospective technologies for lithium-ion battery electrode processing. Chem. Rev. 2022, 122, 903–956.
Fang, R. P.; Zhao, S. Y.; Sun, Z. H.; Wang, D. W.; Cheng, H. M.; Li, F. More reliable lithium-sulfur batteries: Status, solutions and prospects. Adv. Mater. 2017, 29, 1606823.
Seh, Z. W.; Sun, Y. M.; Zhang, Q. F.; Cui, Y. Designing high-energy lithium-sulfur batteries. Chem. Soc. Rev. 2016, 45, 5605–5634.
Chung, S. H.; Manthiram, A. Current status and future prospects of metal-sulfur batteries. Adv. Mater. 2019, 31, 1901125.
Li, X.; Sun, X. L. Interface design and development of coating materials in lithium-sulfur batteries. Adv. Funct. Mater. 2018, 28, 1801323.
Zhuang, T. Z.; Huang, J. Q.; Peng, H. J.; He, L. Y.; Cheng, X. B.; Chen, C. M.; Zhang, Q. Rational integration of polypropylene/graphene oxide/nafion as ternary-layered separator to retard the shuttle of polysulfides for lithium-sulfur batteries. Small 2016, 12, 381–389.
Chen, K.; Zhang, G. D.; Xiao, L. P.; Li, P. W.; Li, W. L.; Xu, Q. C.; Xu, J. Polyaniline encapsulated amorphous V2O5 nanowire-modified multi-functional separators for lithium-sulfur batteries. Small Methods 2021, 5, 2001056.
Xie, F.; Xu, Z.; Guo, Z. Y.; Titirici, M. M. Hard carbons for sodium-ion batteries and beyond. Prog. Energy 2020, 2, 042002.
Nayak, P. K.; Yang, L. T.; Brehm, W.; Adelhelm, P. From lithium-ion to sodium-ion batteries: Advantages, challenges, and surprises. Angew. Chem., Int. Ed. 2018, 57, 102–120.
Ellis, B. L.; Nazar, L. F. Sodium and sodium-ion energy storage batteries. Curr. Opin. Solid State Mater. Sci. 2012, 16, 168–177.
Pu, X. J.; Wang, H. M.; Zhao, D.; Yang, H. X.; Ai, X. P.; Cao, S. N.; Chen, Z. X.; Cao, Y. L. Recent progress in rechargeable sodium-ion batteries: Toward high-power applications. Small 2019, 15, 1805427.
Wei, Q. L.; Jiang, Z. Y.; Tan, S. S.; Li, Q. D.; Huang, L.; Yan, M. Y.; Zhou, L.; An, Q. Y.; Mai, L. Q. Lattice breathing inhibited layered vanadium oxide ultrathin nanobelts for enhanced sodium storage. ACS Appl. Mater. Interfaces 2015, 7, 18211–18217.
Chen, M. Z.; Liu, Q. N.; Hu, Z.; Zhang, Y. Y.; Xing, G. C.; Tang, Y. X.; Chou, S. L. Designing advanced vanadium-based materials to achieve electrochemically active multielectron reactions in sodium/potassium-ion batteries. Adv. Energy Mater. 2020, 10, 2002244.
Qin, Z. Z.; Lv, C. D.; Pei, J.; Yan, C. S.; Hu, Y. Y.; Chen, G. A 1D honeycomb-like amorphous zincic vanadate for stable and fast sodium-ion storage. Small 2020, 16, 1906214.
Zhang, W.; Peng, J.; Hua, W. B.; Liu, Y.; Wang, J. S.; Liang, Y. R.; Lai, W. H.; Jiang, Y.; Huang, Y.; Zhang, W. et al. Architecting amorphous vanadium oxide/MXene nanohybrid via tunable anodic oxidation for high-performance sodium-ion batteries. Adv. Energy Mater. 2021, 11, 2100757.
Venkatesh, G.; Pralong, V.; Lebedev, O. I.; Caignaert, V.; Bazin, P.; Raveau, B. Amorphous sodium vanadate Na1.5+yVO3, a promising matrix for reversible sodium intercalation. Electrochem. Commun. 2014, 40, 100–102.
Kim, H.; Kim, J. C.; Bianchini, M.; Seo, D. H.; Rodriguez-Garcia, J.; Ceder, G. Recent progress and perspective in electrode materials for K-ion batteries. Adv. Energy Mater. 2018, 8, 1702384.
Rajagopalan, R.; Tang, Y. G.; Ji, X. B.; Jia, C. K.; Wang, H. Y. Advancements and challenges in potassium ion batteries: A comprehensive review. Adv. Funct. Mater. 2020, 30, 1909486.
Pramudita, J. C.; Sehrawat, D.; Goonetilleke, D.; Sharma, N. An initial review of the status of electrode materials for potassium-ion batteries. Adv. Energy Mater. 2017, 7, 1602911.
Li, Y. P.; Zhang, Q. B.; Yuan, Y. F.; Liu, H. D.; Yang, C. H.; Lin, Z.; Lu, J. Surface amorphization of vanadium dioxide (B) for K-ion battery. Adv. Energy Mater. 2020, 10, 2000717.
Liu, T.; Li, L.; Yao, T. H.; Li, Y. N.; Zhu, L.; Li, F.; Han, X. G.; Cheng, Y. H.; Wang, H. K. Integrating amorphous vanadium oxide into carbon nanofibers via electrospinning as high-performance anodes for alkaline ion (Li+/Na+/K+) batteries. Electrochim. Acta. 2021, 369, 137711.
Guduru, R. K.; Icaza, J. C. A brief review on multivalent intercalation batteries with aqueous electrolytes. Nanomaterials 2016, 6, 41.
Zhang, F. L.; Zhang, W. C.; Wexler, D.; Guo, Z. P. Recent progress and future advances on aqueous monovalent-ion batteries towards safe and high-power energy storage. Adv. Mater. 2022, 34, 2107965.
Karapidakis, E.; Vernardou, D. Progress on V2O5 cathodes for multivalent aqueous batteries. Materials 2021, 14, 2310.
Chen, J. Y.; Qiao, X.; Han, X. R.; Zhang, J. H.; Wu, H. B.; He, Q.; Chen, Z. B.; Shi, L.; Wang, Y. Z.; Xie, Y. N. et al. Releasing plating-induced stress for highly reversible aqueous Zn metal anodes. Nano Energy 2022, 103, 107814.
Ruan, P. C.; Liang, S. Q.; Lu, B. G.; Fan, H. J.; Zhou, J. Design strategies for high-energy-density aqueous zinc batteries. Angew. Chem., Int. Ed. 2022, 61, e202200598.
Blanc, L. E.; Kundu, D.; Nazar, L. F. Scientific challenges for the implementation of Zn-ion batteries. Joule 2020, 4, 771–799.
Li, Y.; Wang, S. Y.; Salvador, J. R.; Wu, J. P.; Liu, B.; Yang, W. L.; Yang, J.; Zhang, W. Q.; Liu, J.; Yang, J. H. Reaction mechanisms for long-life rechargeable Zn/MnO2 batteries. Chem. Mater. 2019, 31, 2036–2047.
Kasiri, G.; Trócoli, R.; Hashemi, A. B.; Mantia, F. L. An electrochemical investigation of the aging of copper hexacyanoferrate during the operation in zinc-ion batteries. Electrochim. Acta. 2016, 222, 74–83.
Xie, X. Q.; Zhao, M. Q.; Anasori, B.; Maleski, K.; Ren, C. E.; Li, J. W.; Byles, B. W.; Pomerantseva, E.; Wang, G. X.; Gogotsi, Y. Porous heterostructured MXene/carbon nanotube composite paper with high volumetric capacity for sodium-based energy storage devices. Nano Energy 2016, 26, 513–523.
Zhang, S. S.; Zhang, H. Y.; Li, S. K.; Li, L.; Zhang, S. Q.; Liu, Z. J. Phosphate synergism activation strategy for amorphous vanadium oxide cathode materials of high-performance aqueous zinc ion batteries. J. Power Sources 2022, 543, 231825.
Guo, J.; Ming, J.; Lei, Y. J.; Zhang, W. L.; Xia, C.; Cui, Y.; Alshareef, H. N. Artificial solid electrolyte interphase for suppressing surface reactions and cathode dissolution in aqueous zinc ion batteries. ACS Energy Lett. 2019, 4, 2776–2781.
Zhang, S. S.; Li, S. K.; Zhang, H. Y.; Wen, D. F.; Zhang, S. Q.; Li, L.; Liu, Z. J. Phosphate interphase reinforced amorphous vanadium oxide cathode materials for aqueous zinc ion batteries. Chem. Commun. 2022, 58, 8089–8092.
Yu, X. Y.; Yu, L.; Lou, X. W. Hollow nanostructures of molybdenum sulfides for electrochemical energy storage and conversion. Small Methods 2017, 1, 1600020.
Chen, L. L.; Yang, Z. H.; Huang, Y. G. Monoclinic VO2 (D) hollow nanospheres with super-long cycle life for aqueous zinc ion batteries. Nanoscale 2019, 11, 13032–13039.
Li, C. L.; Li, M.; Xu, H. T.; Zhao, F.; Gong, S. Q.; Wang, H. H.; Qi, J. J.; Wang, Z. Y.; Fan, X. B.; Peng, W. C. et al. Constructing hollow nanotube-like amorphous vanadium oxide and carbon hybrid via in-situ electrochemical induction for high-performance aqueous zinc-ion batteries. J. Colloid Interface Sci. 2022, 623, 277–284.
Wu, S. G.; Ding, Y. C.; Hu, L. H.; Zhang, X. X.; Huang, Y.; Chen, S. H. Amorphous V2O5 as high performance cathode for aqueous zinc ion battery. Mater. Lett. 2020, 277, 128268.
Diem, A. M.; Fenk, B.; Bill, J.; Burghard, Z. Binder-free V2O5 cathode for high energy density rechargeable aluminum-ion batteries. Nanomaterials 2020, 10, 247.
Tepavcevic, S.; Liu, Y. Z.; Zhou, D. H.; Lai, B.; Maser, J.; Zuo, X. B.; Chan, H.; Král, P.; Johnson, C. S.; Stamenkovic, V. et al. Nanostructured layered cathode for rechargeable Mg-ion batteries. ACS Nano 2015, 9, 8194–8205.
Zhang, W. L.; Xu, C.; Ma, C. Q.; Li, G. X.; Wang, Y. Z.; Zhang, K. Y.; Li, F.; Liu, C.; Cheng, H. M.; Du, Y. W. et al. Nitrogen-superdoped 3D graphene networks for high-performance supercapacitors. Adv. Mater. 2017, 29, 1701677.
Shao, Y. Y.; Sun, Z. T.; Tian, Z. N.; Li, S.; Wu, G. Q.; Wang, M. L.; Tong, X. L.; Shen, F.; Xia, Z.; Tung, V. et al. Regulating oxygen substituents with optimized redox activity in chemically reduced graphene oxide for aqueous Zn-ion hybrid capacitor. Adv. Funct. Mater. 2021, 31, 2007843.
Yang, M.; Zhou, Z. Recent breakthroughs in supercapacitors boosted by nitrogen-rich porous carbon materials. Adv. Sci. 2017, 4, 1600408.
Reddy, R. N.; Reddy, R. G. Synthesis and electrochemical characterization of amorphous MnO2 electrochemical capacitor electrode material. J. Power Sources 2004, 132, 315–320.
Perera, S. D.; Patel, B.; Nijem, N.; Roodenko, K.; Seitz, O.; Ferraris, J. P.; Chabal, Y. J.; Balkus, K. J. Jr. Vanadium oxide nanowire-carbon nanotube binder-free flexible electrodes for supercapacitors. Adv. Energy Mater. 2011, 1, 936–945.
Kandalkar, S. G.; Lokhande, C. D.; Mane, R. S.; Han, S. H. A non-thermal chemical synthesis of hydrophilic and amorphous cobalt oxide films for supercapacitor application. Appl. Surf. Sci. 2007, 253, 3952–3956.
Pan, X.; Ren, G. F.; Hoque, M. N. F.; Bayne, S.; Zhu, K.; Fan, Z. Y. Fast supercapacitors based on graphene-bridged V2O3/VOx core–shell nanostructure electrodes with a power density of 1 MW·kg−1. Adv. Mater. Interfaces 2014, 1, 1400398.