Graphical Abstract

Optical tweezers that rely on laser irradiation to capture and manipulate nanoparticles have provided powerful tools for biological and biochemistry studies. However, the existence of optical diffraction-limit and the thermal damage caused by high laser power hinder the wider application of optical tweezers in the biological field. For the past decade, the emergence of optothermal tweezers has solved the above problems to a certain extent, while the auxiliary agents used in optothermal tweezers still limit their biocompatibility. Here, we report a kind of nanotweezers based on the sign transformation of the thermophoresis coefficient of colloidal particles in low-temperature environment. Using a self-made microfluidic refrigerator to reduce the ambient temperature to around 0 °C in the microfluidic cell, we can control a single nanoparticle at lower laser power without adding additional agent solute in the solution. This novel optical tweezering scheme has provided a new path for the manipulation of inorganic nanoparticles as well as biological particles.
Ashkin, A.; Dziedzic, J. M.; Yamane, T. Optical trapping and manipulation of single cells using infrared laser beams. Nature 1987, 330, 769–771.
Grier, D. G. A revolution in optical manipulation. Nature 2003, 424, 810–816.
Fränzl, M.; Thalheim, T.; Adler, J.; Huster, D.; Posseckardt, J.; Mertig, M.; Cichos, F. Thermophoretic trap for single amyloid fibril and protein aggregation studies. Nat. Methods 2019, 16, 611–614.
Jiang, H. R.; Wada, H.; Yoshinaga, N.; Sano, M. Manipulation of colloids by a nonequilibrium depletion force in a temperature gradient. Phys. Rev. Lett. 2009, 102, 208301.
Gargiulo, J.; Brick, T.; Violi, I. L.; Herrera, F. C.; Shibanuma, T.; Albella, P.; Requejo, F. G.; Cortés, E.; Maier, S. A.; Stefani, F. D. Understanding and reducing photothermal forces for the fabrication of Au nanoparticle dimers by optical printing. Nano Lett. 2017, 17, 5747–5755.
Grigorenko, A. N.; Roberts, N. W.; Dickinson, M. R.; Zhang, Y. Nanometric optical tweezers based on nanostructured substrates. Nat. Photonics 2008, 2, 365–370.
Babynina, A.; Fedoruk, M.; Kühler, P.; Meledin, A.; Döblinger, M.; Lohmüller, T. Bending gold nanorods with light. Nano Lett. 2016, 16, 6485–6490.
Blázquez-Castro, A. Optical tweezers: Phototoxicity and thermal stress in cells and biomolecules. Micromachines 2019, 10, 507.
Volpe, G.; Quidant, R.; Badenes, G.; Petrov, D. Surface plasmon radiation forces. Phys. Rev. Lett. 2006, 96, 238101.
Min, C. J.; Shen, Z.; Shen, J. F.; Zhang, Y. Q.; Fang, H.; Yuan, G. H.; Du, L. P.; Zhu, S. W.; Lei, T.; Yuan, X. C. Focused plasmonic trapping of metallic particles. Nat. Commun. 2013, 4, 2891.
Zhang, W. H.; Huang, L. N.; Santschi, C.; Martin, O. J. F. Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas. Nano Lett. 2010, 10, 1006–1011.
Kang, J. H.; Kim, K.; Ee, H. S.; Lee, Y. H.; Yoon, T. Y.; Seo, M. K.; Park, H. G. Low-power nano-optical vortex trapping via plasmonic diabolo nanoantennas. Nat. Commun. 2011, 2, 582.
Pang, Y. J.; Gordon, R. Optical trapping of 12 nm dielectric spheres using double-nanoholes in a gold film. Nano Lett. 2011, 11, 3763–3767.
Braun, M.; Cichos, F. Optically controlled thermophoretic trapping of single nano-objects. ACS Nano 2013, 7, 11200–11208.
Chen, J. J.; Kang, Z. W.; Kong, S. K.; Ho, H. P. Plasmonic random nanostructures on fiber tip for trapping live cells and colloidal particles. Opt. Lett. 2015, 40, 3926–3929.
Kang, Z. W.; Chen, J. J.; Wu, S. Y.; Chen, K.; Kong, S. K.; Yong, K. T.; Ho, H. P. Trapping and assembling of particles and live cells on large-scale random gold nano-island substrates. Sci. Rep. 2015, 5, 9978.
Chen, J. J.; Cong, H. J.; Loo, F. C.; Kang, Z. W.; Tang, M. H.; Zhang, H. X.; Wu, S. Y.; Kong, S. K.; Ho, H. P. Thermal gradient induced tweezers for the manipulation of particles and cells. Sci. Rep. 2016, 6, 35814.
Lin, L. H.; Hill, E. H.; Peng, X. L.; Zheng, Y. B. Optothermal manipulations of colloidal particles and living cells. Acc. Chem. Res. 2018, 51, 1465–1474.
Lin, L. H.; Wang, M. S.; Peng, X. L.; Lissek, E. N.; Mao, Z. M.; Scarabelli, L.; Adkins, E.; Coskun, S.; Unalan, H. E.; Korgel, B. A. Opto-thermoelectric nanotweezers. Nat. Photonics 2018, 12, 195–201.
Chen, J. J.; Loo, J. F. C.; Wang, D. P.; Zhang, Y.; Kong, S. K.; Ho, H. P. Thermal optofluidics: Principles and applications. Adv. Opt. Mater. 2020, 8, 1900829.
Fränzl, M.; Cichos, F. Hydrodynamic manipulation of nano-objects by optically induced thermo-osmotic flows. Nat. Commun. 2022, 13, 656.
Wang, X. Y.; Yuan, Y. Q.; Xie, X.; Zhang, Y. Q.; Min, C. J.; Yuan, X. C. Graphene-based opto-thermoelectric tweezers. Adv. Mater. 2022, 34, 2107691.
Würger, A. Thermal non-equilibrium transport in colloids. Rep. Prog. Phys. 2010, 73, 126601.
Lin, L. H.; Peng, X. L.; Mao, Z. M.; Wei, X. L.; Xie, C.; Zheng, Y. B. Interfacial-entropy-driven thermophoretic tweezers. Lab Chip 2017, 17, 3061–3070.
Li, J. G.; Chen, Z. H.; Liu, Y. R.; Kollipara, P. S.; Feng, Y. C.; Zhang, Z. L.; Zheng, Y. B. Opto-refrigerative tweezers. Sci. Adv. 2021, 7, eabh1101.
Zhou, J. X.; Dai, X. Q.; Jia, B. L.; Qu, J. L.; Ho, H. P.; Gao, B. Z.; Shao, Y. H.; Chen, J. J. Nanorefrigerative tweezers for optofluidic manipulation. Appl. Phys. Lett. 2022, 120, 163701.
Roder, P. B.; Smith, B. E.; Zhou, X. Z.; Crane, M. J.; Pauzauskie, P. J. Laser refrigeration of hydrothermal nanocrystals in physiological media. Proc. Natl. Acad. Sci. USA 2015, 112, 15024–15029.
Rahman, A. T. M. A.; Barker, P. F. Laser refrigeration, alignment and rotation of levitated Yb3+: YLF nanocrystals. Nat. Photonics 2017, 11, 634–638.
Duhr, S.; Braun, D. Why molecules move along a temperature gradient. Proc. Natl. Acad. Sci. USA 2006, 103, 19678–19682.
Hansen, P. M.; Bhatia, V. K.; Harrit, N.; Oddershede, L. Expanding the optical trapping range of gold nanoparticles. Nano Lett. 2005, 5, 1937–1942.
De Groot, S. R.; Mazur, P. Non-Equilibrium Thermodynamics. Am J Phys 2013, 31, 558–559.
Duhr, S.; Braun, D. Thermophoretic depletion follows Boltzmann distribution. Phys. Rev. Lett. 2006, 96, 168301.
Braibanti, M.; Vigolo, D.; Piazza, R. Does thermophoretic mobility depend on particle size. Phys. Rev. Lett. 2008, 100, 108303.
Anderson, J. L. Colloid transport by interfacial forces. Annu. Rev. Fluid Mech. 1989, 21, 61–99.
Bregulla, A. P.; Würger, A.; Günther, K.; Mertig, M.; Cichos, F. Thermo-osmotic flow in thin films. Phys. Rev. Lett. 2016, 116, 188303.
Donner, J. S.; Baffou, G.; McCloskey, D.; Quidant, R. Plasmon-assisted optofluidics. ACS Nano 2011, 5, 5457–5462.
Wong, W. P.; Halvorsen, K. The effect of integration time on fluctuation measurements: Calibrating an optical trap in the presence of motion blur. Opt. Express 2006, 14, 12517–12531.
Ding, H. R.; Kollipara, P. S.; Lin, L. H.; Zheng, Y. B. Atomistic modeling and rational design of optothermal tweezers for targeted applications. Nano Res. 2021, 14, 295–303.
Haidacher, D.; Vailaya, A.; Horváth, C. Temperature effects in hydrophobic interaction chromatography. Proc. Natl. Acad. Sci. USA 1996, 93, 2290–2295.
Southall, N. T.; Dill, K. A.; Haymet, A. D. J. A view of the hydrophobic effect. J. Phys. Chem. B 2002, 106, 521–533.
Iacopini, S.; Piazza, R. Thermophoresis in protein solutions. Eur. Lett. 2003, 63, 247–253.
Iacopini, S.; Rusconi, R.; Piazza, R. The “macromolecular tourist": Universal temperature dependence of thermal diffusion in aqueous colloidal suspensions. Eur. Phys. J. E 2006, 19, 59–67.