AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

Recent advances in high-performance triboelectric nanogenerators

Di Liu1,2,§Yikui Gao1,2,§Linglin Zhou1,2Jie Wang1,2( )Zhong Lin Wang1,2,3 ( )
Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
College of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA

§ Di Liu and Yikui Gao contributed equally to this work.

Show Author Information

Graphical Abstract

The high-performance triboelectric nanogenerators (TENGs) are discussed from the perspectives of three representative and standard electric parameters including triboelectric charge density, output voltage and energy density, and corresponding quantification methods. Among these topics, the limitations, optimization methods and techniques, and potential directions to challenge these limits are comprehensively discussed and reviewed.

Abstract

The development of the Internet of Things (IoT) and artificial intelligence has accompanied the evolution of energy demand and structure in the new era, and the power sources for billions of distributed electronics and sensors have aroused worldwide interest. As an alternative energy harvesting technology, triboelectric nanogenerators (TENGs) have received remarkable attention and have shown attractive potential applications for use in micro/nano power sources, self-powered sensors, high-voltage power sources, and blue energy due to their advantages of small size, light weight, flexibility, low cost, and high efficiency at low frequency. In this review, we discuss high-performance TENGs from the perspectives of triboelectric charge density, output voltage, energy density, and corresponding quantification methods. Among these topics, the limitations, optimization methods and techniques, and potential directions to challenge these limits are comprehensively discussed and reviewed. Finally, we discuss the emerging challenges, strategies, and opportunities for research and development of high-performance TENGs.

References

[1]

Wang, Z. L. Entropy theory of distributed energy for internet of things. Nano Energy 2019, 58, 669–672.

[2]

Wang, Z. L. Triboelectric nanogenerators as new energy technology and self-powered sensors—Principles, problems, and perspectives. Faraday Discuss. 2014, 176, 447–458.

[3]

Fan, F. R.; Tian, Z. Q.; Wang, Z. L. Flexible triboelectric generator. Nano Energy 2012, 1, 328–334.

[4]

Zhu, G.; Chen, J.; Zhang, T. J.; Jing, Q. S.; Wang, Z. L. Radial-arrayed rotary electrification for high performance triboelectric generator. Nat. Commun. 2014, 5, 3426.

[5]

Xu, W. H.; Zheng, H. X.; Liu, Y.; Zhou, X. F.; Zhang, C.; Song, Y. X.; Deng, X.; Leung, M.; Yang, Z. B.; Xu, R. X. et al. A droplet-based electricity generator with high instantaneous power density. Nature 2020, 578, 392–396.

[6]

Hinchet, R.; Yoon, H. J.; Ryu, H.; Kim, M. K.; Choi, E. K.; Kim, D. S.; Kim, S. W. Transcutaneous ultrasound energy harvesting using capacitive triboelectric technology. Science 2019, 365, 491–494.

[7]

Dong, Y.; Xu, S. W.; Zhang, C.; Zhang, L. Q.; Wang, D. A.; Xie, Y. Y.; Luo, N.; Feng, Y. G.; Wang, N. N.; Feng, M. et al. Gas–liquid two-phase flow-based triboelectric nanogenerator with ultrahigh output power. Sci. Adv. 2022, 8, eadd0464.

[8]

Li, Y. H.; Zhao, Z. H.; Gao, Y. K.; Li, S. X.; Zhou, L. L.; Wang, J.; Wang, Z. L. Low-cost, environmentally friendly, and high-performance triboelectric nanogenerator based on a common waste material. ACS Appl. Mater. Interfaces 2021, 13, 30776–30784.

[9]

Guo, H. Y.; Pu, X. J.; Chen, J.; Meng, Y.; Yeh, M. H.; Liu, G. L.; Tang, Q.; Chen, B. D.; Liu, D.; Qi, S. et al. A highly sensitive, self-powered triboelectric auditory sensor for social robotics and hearing aids. Sci. Robot. 2018, 3, eaat2516.

[10]

Li, S. X.; Zhao, Z. H.; Liu, D.; An, J.; Gao, Y. K.; Zhou, L. L.; Li, Y. H.; Cui, S. N.; Wang, J.; Wang, Z. L. A self-powered dual-type signal vector sensor for smart robotics and automatic vehicles. Adv. Mater. 2022, 34, 2110363.

[11]

Zhang, J. H.; Li, Z. T.; Xu, J.; Li, J. A.; Yan, K.; Cheng, W.; Xin, M.; Zhu, T. S.; Du, J. H.; Chen, S. X. et al. Versatile self-assembled electrospun micropyramid arrays for high-performance on-skin devices with minimal sensory interference. Nat. Commun. 2022, 13, 5839.

[12]

Sun, Z. D.; Zhu, M. L.; Shan, X. C.; Lee, C. Augmented tactile-perception and haptic-feedback rings as human–machine interfaces aiming for immersive interactions. Nat. Commun. 2022, 13, 5224.

[13]

Zhang, Q.; Liang, Q. J.; Nandakumar, D. K.; Qu, H.; Shi, Q. F.; Alzakia, F. I.; Tay, D. J. J.; Yang, L.; Zhang, X. P.; Suresh, L. et al. Shadow enhanced self-charging power system for wave and solar energy harvesting from the ocean. Nat. Commun. 2021, 12, 616.

[14]

Zhang, C. G.; He, L. X.; Zhou, L. L.; Yang, O.; Yuan, W.; Wei, X. L.; Liu, Y. B.; Lu, L.; Wang, J.; Wang, Z. L. Active resonance triboelectric nanogenerator for harvesting omnidirectional water-wave energy. Joule 2021, 5, 1613–1623.

[15]

Xu, S. X.; Liu, G. L.; Wang, J. B.; Wen, H. G.; Cao, S.; Yao, H. L.; Wan, L. Y.; Wang, Z. L. Interaction between water wave and geometrical structures of floating triboelectric nanogenerators. Adv. Energy Mater. 2022, 12, 2103408.

[16]

Liang, X.; Jiang, T.; Liu, G. X.; Feng, Y. W.; Zhang, C.; Wang, Z. L. Spherical triboelectric nanogenerator integrated with power management module for harvesting multidirectional water wave energy. Energy Environ. Sci. 2020, 13, 277–285.

[17]

Li, Y. F.; Bouza, M.; Wu, C. S.; Guo, H. Y.; Huang, D. N.; Doron, G.; Temenoff, J. S.; Stecenko, A. A.; Wang, Z. L.; Fernández, F. M. Sub-nanoliter metabolomics via mass spectrometry to characterize volume-limited samples. Nat. Commun. 2020, 11, 5625.

[18]

Yang, H.; Pang, Y. K.; Bu, T. Z.; Liu, W. B.; Luo, J. J.; Jiang, D. D.; Zhang, C.; Wang, Z. L. Triboelectric micromotors actuated by ultralow frequency mechanical stimuli. Nat. Commun. 2019, 10, 2309.

[19]

Li, Q. Y.; Liu, W. L.; Yang, H. M.; He, W. C.; Long, L.; Wu, M. B.; Zhang, X. M.; Xi, Y.; Hu, C. G.; Wang, Z. L. Ultra-stability high-voltage triboelectric nanogenerator designed by ternary dielectric triboelectrification with partial soft-contact and non-contact mode. Nano Energy 2021, 90, 106585.

[20]

Zhou, L. L.; Liu, D.; Li, S. X.; Yin, X.; Zhang, C. L.; Li, X. Y.; Zhang, C. G.; Zhang, W.; Cao, X.; Wang, J. et al. Effective removing of hexavalent chromium from wasted water by triboelectric nanogenerator driven self-powered electrochemical system—Why pulsed DC is better than continuous DC? Nano Energy 2019, 64, 103915.

[21]

Han, K.; Luo, J. J.; Feng, Y. W.; Xu, L.; Tang, W.; Wang, Z. L. Self-powered electrocatalytic ammonia synthesis directly from air as driven by dual triboelectric nanogenerators. Energy Environ. Sci. 2020, 13, 2450–2458.

[22]

Zhang, S.; Chi, M. C.; Mo, J. L.; Liu, T.; Liu, Y. H.; Fu, Q.; Wang, J. L.; Luo, B.; Qin, Y.; Wang, S. F. et al. Bioinspired asymmetric amphiphilic surface for triboelectric enhanced efficient water harvesting. Nat. Commun. 2022, 13, 4168.

[23]

Huo, Z. Y.; Kim, Y. J.; Suh, I. Y.; Lee, D. M.; Lee, J. H.; Du, Y.; Wang, S.; Yoon, H. J.; Kim, S. W. Triboelectrification induced self-powered microbial disinfection using nanowire-enhanced localized electric field. Nat. Commun. 2021, 12, 3693.

[24]

Zhang, B. F.; Zhang, C. G.; Yang, O.; Yuan, W.; Liu, Y. B.; He, L. X.; Hu, Y. X.; Zhao, Z. H.; Zhou, L. L.; Wang, J. et al. Self-powered seawater electrolysis based on a triboelectric nanogenerator for hydrogen production. ACS Nano 2022, 16, 15286–15296.

[25]

Liu, W. B.; Duo, Y. N.; Liu, J. Q.; Yuan, F. Y.; Li, L.; Li, L. C.; Wang, G.; Chen, B. H.; Wang, S. Q.; Yang, H. et al. Touchless interactive teaching of soft robots through flexible bimodal sensory interfaces. Nat. Commun. 2022, 13, 5030.

[26]

Zhu, M. L.; Sun, Z. D.; Chen, T.; Lee, C. Low cost exoskeleton manipulator using bidirectional triboelectric sensors enhanced multiple degree of freedom sensory system. Nat. Commun. 2021, 12, 2692.

[27]

Pu, X.; Liu, M. M.; Chen, X. Y.; Sun, J. M.; Du, C. H.; Zhang, Y.; Zhai, J. Y.; Hu, W. G.; Wang, Z. L. Ultrastretchable, transparent triboelectric nanogenerator as electronic skin for biomechanical energy harvesting and tactile sensing. Sci. Adv. 2017, 3, e1700015.

[28]

Wu, H. X.; Su, Z. M.; Shi, M. Y.; Miao, L. M.; Song, Y.; Chen, H. T.; Han, M. D.; Zhang, H. X. Self-powered noncontact electronic skin for motion sensing. Adv. Funct. Mater. 2018, 28, 1704641.

[29]

Shen, S.; Yi, J.; Sun, Z. D.; Guo, Z. H.; He, T. Y.; Ma, L. Y.; Li, H. M.; Fu, J. J.; Lee, C.; Wang, Z. L. Human machine interface with wearable electronics using biodegradable triboelectric films for calligraphy practice and correction. Nano-Micro Lett. 2022, 14, 225.

[30]

Zhu, M. L.; Sun, Z. D.; Zhang, Z. X.; Shi, Q. F.; He, T. Y.; Liu, H. C.; Chen, T.; Lee, C. Haptic-feedback smart glove as a creative human–machine interface (HMI) for virtual/augmented reality applications. Sci. Adv. 2020, 6, eaaz8693.

[31]

Wang, H. Y.; Fu, J. J.; Wang, J. Q.; Su, L.; Zi, Y. L. Tribophotonics: An emerging self-powered wireless solution toward smart city. Nano Energy 2022, 97, 107196.

[32]

Jiang, C. M.; Li, X. J.; Ying, Y. B.; Ping, J. F. A multifunctional TENG yarn integrated into agrotextile for building intelligent agriculture. Nano Energy 2020, 74, 104863.

[33]

Li, X. J.; Luo, J. J.; Han, K.; Shi, X.; Ren, Z. W.; Xi, Y.; Ying, Y. B.; Ping, J. F.; Wang, Z. L. Stimulation of ambient energy generated electric field on crop plant growth. Nat. Food 2022, 3, 133–142.

[34]

Dong, K.; Peng, X.; An, J.; Wang, A. C.; Luo, J. J.; Sun, B. Z.; Wang, J.; Wang, Z. L. Shape adaptable and highly resilient 3D braided triboelectric nanogenerators as e-textiles for power and sensing. Nat. Commun. 2020, 11, 2868.

[35]

Wang, Z. L. From contact electrification to triboelectric nanogenerators. Rep. Prog. Phys. 2021, 84, 096502.

[36]

Wu, H.; Wang, S.; Wang, Z. K.; Zi, Y. L. Achieving ultrahigh instantaneous power density of 10 MW/m2 by leveraging the opposite-charge-enhanced transistor-like triboelectric nanogenerator (OCT-TENG). Nat. Commun. 2021, 12, 5470.

[37]

He, W. C.; Liu, W. L.; Fu, S. K.; Wu, H. Y.; Shan, C. C.; Wang, Z.; Xi, Y.; Wang, X.; Guo, H. Y.; Liu, H. et al. Ultrahigh performance triboelectric nanogenerator enabled by charge transmission in interfacial lubrication and potential decentralization design. Research 2022, 2022, 9812865.

[38]

He, W. C.; Shan, C. C.; Fu, S. K.; Wu, H. Y.; Wang, J.; Mu, Q. J.; Li, G.; Hu, C. G. Large harvested energy by self-excited liquid suspension triboelectric nanogenerator with optimized charge transportation behavior. Adv. Mater. 2023, 35, 2209657.

[39]

Li, A. Y.; Zi, Y. L.; Guo, H. Y.; Wang, Z. L.; Fernández, F. M. Triboelectric nanogenerators for sensitive nano-coulomb molecular mass spectrometry. Nat. Nanotechnol. 2017, 12, 481–487.

[40]

Cheng, J.; Ding, W. B.; Zi, Y. L.; Lu, Y. J.; Ji, L. H.; Liu, F.; Wu, C. S.; Wang, Z. L. Triboelectric microplasma powered by mechanical stimuli. Nat. Commun. 2018, 9, 3733.

[41]

Guo, H. Y.; Chen, J.; Wang, L. F.; Wang, A. C.; Li, Y. F.; An, C. H.; He, J. H.; Hu, C. G.; Hsiao, V. K. S.; Wang, Z. L. A highly efficient triboelectric negative air ion generator. Nat. Sustain. 2021, 4, 147–153.

[42]

Xu, W. H.; Jin, Y. K.; Li, W. B.; Song, Y. X.; Gao, S. W.; Zhang, B. P.; Wang, L. L.; Cui, M. M.; Yan, X. T.; Wang, Z. K. Triboelectric wetting for continuous droplet transport. Sci. Adv. 2022, 8, eade2085.

[43]

Sun, J. F.; Zhang, L. J.; Zhou, Y. H.; Li, Z. J.; Libanori, A.; Tang, Q.; Huang, Y. Z.; Hu, C. G.; Guo, H. Y.; Peng, Y. et al. Highly efficient liquid droplet manipulation via human-motion-induced direct charge injection. Mater. Today 2022, 58, 41–47.

[44]

Fan, F. R.; Lin, L.; Zhu, G.; Wu, W. Z.; Zhang, R.; Wang, Z. L. Transparent triboelectric nanogenerators and self-powered pressure sensors based on micropatterned plastic films. Nano Lett. 2012, 12, 3109–3114.

[45]

Wang, S. H.; Lin, L.; Wang, Z. L. Nanoscale triboelectric-effect-enabled energy conversion for sustainably powering portable electronics. Nano Lett. 2012, 12, 6339–6346.

[46]

Xu, L.; Bu, T. Z.; Yang, X. D.; Zhang, C.; Wang, Z. L. Ultrahigh charge density realized by charge pumping at ambient conditions for triboelectric nanogenerators. Nano Energy 2018, 49, 625–633.

[47]

Li, S. Y.; Nie, J. H.; Shi, Y. X.; Tao, X. L.; Wang, F.; Tian, J. W.; Lin, S. Q.; Chen, X. Y.; Wang, Z. L. Contributions of different functional groups to contact electrification of polymers. Adv. Mater. 2020, 32, 2001307.

[48]

Cheng, L.; Xu, Q.; Zheng, Y. B.; Jia, X. F.; Qin, Y. A self-improving triboelectric nanogenerator with improved charge density and increased charge accumulation speed. Nat. Commun. 2018, 9, 3773.

[49]

Wang, J.; Li, S. M.; Yi, F.; Zi, Y. L.; Lin, J.; Wang, X. F.; Xu, Y. L.; Wang, Z. L. Sustainably powering wearable electronics solely by biomechanical energy. Nat. Commun. 2016, 7, 12744.

[50]

Liu, W. L.; Wang, Z.; Wang, G.; Liu, G. L.; Chen, J.; Pu, X. J.; Xi, Y.; Wang, X.; Guo, H. Y.; Hu, C. G. et al. Integrated charge excitation triboelectric nanogenerator. Nat. Commun. 2019, 10, 1426.

[51]

Wu, H. Y.; He, W. C.; Shan, C. C.; Wang, Z.; Fu, S. K.; Tang, Q.; Guo, H. Y.; Du, Y.; Liu, W. L.; Hu, C. G. Achieving remarkable charge density via self-polarization of polar high-k material in a charge-excitation triboelectric nanogenerator. Adv. Mater. 2022, 34, 2109918.

[52]

Wang, S. H.; Xie, Y. N.; Niu, S. M.; Lin, L.; Wang, Z. L. Freestanding triboelectric-layer-based nanogenerators for harvesting energy from a moving object or human motion in contact and non-contact modes. Adv. Mater. 2014, 26, 2818–2824.

[53]

Yin, X.; Liu, D.; Zhou, L. L.; Li, X. Y.; Zhang, C. L.; Cheng, P.; Guo, H. Y.; Song, W. X.; Wang, J.; Wang, Z. L. Structure and dimension effects on the performance of layered triboelectric nanogenerators in contact–separation mode. ACS Nano 2019, 13, 698–705.

[54]

Lei, R.; Shi, Y. X.; Ding, Y. F.; Nie, J. H.; Li, S. Y.; Wang, F.; Zhai, H.; Chen, X. Y.; Wang, Z. L. Sustainable high-voltage source based on triboelectric nanogenerator with a charge accumulation strategy. Energy Environ. Sci. 2020, 13, 2178–2190.

[55]

He, W. C.; Liu, W. L.; Chen, J.; Wang, Z.; Liu, Y. K.; Pu, X. J.; Yang, H. M.; Tang, Q.; Yang, H. K.; Guo, H. Y. et al. Boosting output performance of sliding mode triboelectric nanogenerator by charge space-accumulation effect. Nat. Commun. 2020, 11, 4277.

[56]

Zhou, L. L.; Liu, D.; Zhao, Z. H.; Li, S. X.; Liu, Y. B.; Liu, L.; Gao, Y. K.; Wang, Z. L.; Wang, J. Simultaneously enhancing power density and durability of sliding-mode triboelectric nanogenerator via interface liquid lubrication. Adv. Energy Mater. 2020, 10, 2002920.

[57]

Wang, Z. L.; Wang, A. C. On the origin of contact-electrification. Mater. Today 2019, 30, 34–51.

[58]

Shaw, P. E. The electrical charges from like solids. Nature 1926, 118, 659–660.

[59]

Li, S. M.; Zhou, Y. S.; Zi, Y. L.; Zhang, G.; Wang, Z. L. Excluding contact electrification in surface potential measurement using kelvin probe force microscopy. ACS Nano 2016, 10, 2528–2535.

[60]

Zhou, Y. S.; Liu, Y.; Zhu, G.; Lin, Z. H.; Pan, C. F.; Jing, Q. S.; Wang, Z. L. In situ quantitative study of nanoscale triboelectrification and patterning. Nano Lett. 2013, 13, 2771–2776.

[61]

Zhou, Y. S.; Li, S. M.; Niu, S. M.; Wang, Z. L. Effect of contact- and sliding-mode electrification on nanoscale charge transfer for energy harvesting. Nano Res. 2016, 9, 3705–3713.

[62]

Zhou, Y. S.; Wang, S. H.; Yang, Y.; Zhu, G.; Niu, S. M.; Lin, Z. H.; Liu, Y.; Wang, Z. L. Manipulating nanoscale contact electrification by an applied electric field. Nano Lett. 2014, 14, 1567–1572.

[63]

Lin, S. Q.; Xu, C.; Xu, L.; Wang, Z. L. The overlapped electron-cloud model for electron transfer in contact electrification. Adv. Funct. Mater. 2020, 30, 1909724.

[64]

Cao, Z. Y.; Wu, Z. B.; Ding, R.; Wang, S. W.; Chu, Y.; Xu, J. N.; Teng, J. C.; Ye, X. Y. A compact triboelectric nanogenerator with ultrahigh output energy density of 177.8 J·m−3 via retarding air breakdown. Nano Energy 2022, 93, 106891.

[65]

Zhang, J. Y.; Li, S. X.; Zhao, Z. H.; Gao, Y. K.; Liu, D.; Wang, J.; Wang, Z. L. Highly sensitive three-dimensional scanning triboelectric sensor for digital twin applications. Nano Energy 2022, 97, 107198.

[66]

Yuan, W.; Zhang, C. G.; Zhang, B. F.; Wei, X. L.; Yang, O.; Liu, Y. B.; He, L. X.; Cui, S. N.; Wang, J.; Wang, Z. L. Wearable, breathable, and waterproof triboelectric nanogenerators for harvesting human motion and raindrop energy. Adv. Mater. Technol. 2022, 7, 2101139.

[67]

Sun, J. F.; Zhang, L. J.; Li, Z. J.; Tang, Q.; Chen, J.; Huang, Y. Z.; Hu, C. G.; Guo, H. Y.; Peng, Y.; Wang, Z. L. A mobile and self-powered micro-flow pump based on triboelectricity driven electroosmosis. Adv. Mater. 2021, 33, 2102765.

[68]

Peng, X.; Dong, K.; Ye, C. Y.; Jiang, Y.; Zhai, S. Y.; Cheng, R. W.; Liu, D.; Gao, X. P.; Wang, J.; Wang, Z. L. A breathable, biodegradable, antibacterial, and self-powered electronic skin based on all-nanofiber triboelectric nanogenerators. Sci. Adv. 2020, 6, eaba9624.

[69]

Qin, K.; Chen, C.; Pu, X. J.; Tang, Q.; He, W. C.; Liu, Y. K.; Zeng, Q. X.; Liu, G. L.; Guo, H. Y.; Hu, C. G. Magnetic array assisted triboelectric nanogenerator sensor for real-time gesture interaction. Nano-Micro Lett. 2021, 13, 51.

[70]

Shi, Q. F.; Wu, H.; Wang, H.; Wu, H. X.; Lee, C. Self-powered gyroscope ball using a triboelectric mechanism. Adv. Energy Mater. 2017, 7, 1701300.

[71]

Zeng, Y. M.; Luo, Y.; Lu, Y. R.; Cao, X. Self-powered rain droplet sensor based on a liquid–solid triboelectric nanogenerator. Nano Energy 2022, 98, 107316.

[72]

He, L. X.; Zhang, C. G.; Zhang, B. F.; Yang, O.; Yuan, W.; Zhou, L. L.; Zhao, Z. H.; Wu, Z. Y.; Wang, J.; Wang, Z. L. A dual-mode triboelectric nanogenerator for wind energy harvesting and self-powered wind speed monitoring. ACS Nano 2022, 16, 6244–6254.

[73]

Wang, Z. M.; An, J.; Nie, J. H.; Luo, J. J.; Shao, J. J.; Jiang, T.; Chen, B. D.; Tang, W.; Wang, Z. L. A self-powered angle sensor at nanoradian-resolution for robotic arms and personalized medicare. Adv. Mater. 2020, 32, 2001466.

[74]

Shao, J. J.; Liu, D.; Willatzen, M.; Wang, Z. L. Three-dimensional modeling of alternating current triboelectric nanogenerator in the linear sliding mode. Appl. Phys. Rev. 2020, 7, 011405.

[75]

Dharmasena, R. D. I. G.; Jayawardena, K. D. G. I.; Mills, C. A.; Deane, J. H. B.; Anguita, J. V.; Dorey, R. A.; Silva, S. R. P. Triboelectric nanogenerators: Providing a fundamental framework. Energy Environ. Sci. 2017, 10, 1801–1811.

[76]

Wang, Z. L. On the first principle theory of nanogenerators from Maxwell’s equations. Nano Energy 2020, 68, 104272.

[77]

Zi, Y. L.; Niu, S. M.; Wang, J.; Wen, Z.; Tang, W.; Wang, Z. L. Standards and figure-of-merits for quantifying the performance of triboelectric nanogenerators. Nat. Commun. 2015, 6, 8376.

[78]

Xia, X.; Fu, J. J.; Zi, Y. L. A universal standardized method for output capability assessment of nanogenerators. Nat. Commun. 2019, 10, 4428.

[79]

Wang, J.; Wu, C. S.; Dai, Y. J.; Zhao, Z. H.; Wang, A.; Zhang, T. J.; Wang, Z. L. Achieving ultrahigh triboelectric charge density for efficient energy harvesting. Nat. Commun. 2017, 8, 88.

[80]

Wang, S. H.; Xie, Y. N.; Niu, S. M.; Lin, L.; Liu, C.; Zhou, Y. S.; Wang, Z. L. Maximum surface charge density for triboelectric nanogenerators achieved by ionized-air injection: Methodology and theoretical understanding. Adv. Mater. 2014, 26, 6720–6728.

[81]

Liu, D.; Zhou, L. L.; Cui, S. N.; Gao, Y. K.; Li, S. X.; Zhao, Z. H.; Yi, Z. Y.; Zou, H. Y.; Fan, Y. J.; Wang, J. et al. Standardized measurement of dielectric materials’ intrinsic triboelectric charge density through the suppression of air breakdown. Nat. Commun. 2022, 13, 6019.

[82]

Zi, Y. L.; Wu, C. S.; Ding, W. B.; Wang, Z. L. Maximized effective energy output of contact–separation-triggered triboelectric nanogenerators as limited by air breakdown. Adv. Funct. Mater. 2017, 27, 1700049.

[83]

Zhang, C. L.; Zhou, L. L.; Cheng, P.; Yin, X.; Liu, D.; Li, X. Y.; Guo, H. Y.; Wang, Z. L.; Wang, J. Surface charge density of triboelectric nanogenerators: Theoretical boundary and optimization methodology. Appl. Mater. Today 2020, 18, 100496.

[84]

Fu, J. J.; Xia, X.; Xu, G. Q.; Li, X. Y.; Zi, Y. L. On the maximal output energy density of nanogenerators. ACS Nano 2019, 13, 13257–13263.

[85]

Zou, H. Y.; Zhang, Y.; Guo, L. T.; Wang, P. H.; He, X.; Dai, G. Z.; Zheng, H. W.; Chen, C. Y.; Wang, A. C.; Xu, C. et al. Quantifying the triboelectric series. Nat. Commun. 2019, 10, 1427.

[86]

Yang, W. X.; Wang, X. L.; Li, H. Q.; Wu, J.; Hu, Y. Q.; Li, Z. H.; Liu, H. Fundamental research on the effective contact area of micro-/nano-textured surface in triboelectric nanogenerator. Nano Energy 2019, 57, 41–47.

[87]

Verners, O.; Lapčinskis, L.; Ģermane, L.; Kasikov, A.; Timusk, M.; Pudzs, K.; Ellis, A. V.; Sherrell, P. C.; Šutka, A. Smooth polymers charge negatively: Controlling contact electrification polarity in polymers. Nano Energy 2022, 104, 107914.

[88]

Wang, S. H.; Zi, Y. L.; Zhou, Y. S.; Li, S. M.; Fan, F. R.; Lin, L.; Wang, Z. L. Molecular surface functionalization to enhance the power output of triboelectric nanogenerators. J. Mater. Chem. A 2016, 4, 3728–3734.

[89]

Shin, S. H.; Kwon, Y. H.; Kim, Y. H.; Jung, J. Y.; Lee, M. H.; Nah, J. Triboelectric charging sequence induced by surface functionalization as a method to fabricate high performance triboelectric generators. ACS Nano 2015, 9, 4621–4627.

[90]

Song, G.; Kim, Y.; Yu, S.; Kim, M. O.; Park, S. H.; Cho, S. M.; Velusamy, D. B.; Cho, S. H.; Kim, K. L.; Kim, J. et al. Molecularly engineered surface triboelectric nanogenerator by self-assembled monolayers (METS). Chem. Mater. 2015, 27, 4749–4755.

[91]

Yu, B.; Yu, H.; Huang, T.; Wang, H. Z.; Zhu, M. F. A biomimetic nanofiber-based triboelectric nanogenerator with an ultrahigh transfer charge density. Nano Energy 2018, 48, 464–470.

[92]

Chun, J. S.; Ye, B. U.; Lee, J. W.; Choi, D.; Kang, C. Y.; Kim, S. W.; Wang, Z. L.; Baik, J. M. Boosted output performance of triboelectric nanogenerator via electric double layer effect. Nat. Commun. 2016, 7, 12985.

[93]

Fu, J. J.; Xu, G. Q.; Li, C. H.; Xia, X.; Guan, D.; Li, J.; Huang, Z. Y.; Zi, Y. L. Achieving ultrahigh output energy density of triboelectric nanogenerators in high-pressure gas environment. Adv. Sci. 2020, 7, 2001757.

[94]

Lin, S. Q.; Xu, L.; Xu, C.; Chen, X. Y.; Wang, A. C.; Zhang, B. B.; Lin, P.; Yang, Y.; Zhao, H. B.; Wang, Z. L. Electron transfer in nanoscale contact electrification: Effect of temperature in the metal-dielectric case. Adv. Mater. 2019, 31, 1808197.

[95]

Xu, C.; Zi, Y. L.; Wang, A. C.; Zou, H. Y.; Dai, Y. J.; He, X.; Wang, P. H.; Wang, Y. C.; Feng, P. Z.; Li, D. W. et al. On the electron-transfer mechanism in the contact-electrification effect. Adv. Mater. 2018, 30, 1706790.

[96]

Cheng, B. L.; Xu, Q.; Ding, Y. Q.; Bai, S.; Jia, X. F.; Yu, Y. D. C.; Wen, J.; Qin, Y. High performance temperature difference triboelectric nanogenerator. Nat. Commun. 2021, 12, 4782.

[97]

Wang, K.; Qiu, Z. R.; Wang, J. X.; Liu, Y.; Chen, R.; An, H. Q.; Park, J. H.; Suk, C. H.; Wu, C. X.; Lin, J. T. et al. Effect of relative humidity on the enhancement of the triboelectrification efficiency utilizing water bridges between triboelectric materials. Nano Energy 2022, 93, 106880.

[98]

Liu, L.; Zhou, L. L.; Zhang, C. G.; Zhao, Z. H.; Li, S. X.; Li, X. Y.; Yin, X.; Wang, J.; Wang, Z. L. A high humidity-resistive triboelectric nanogenerator via coupling of dielectric material selection and surface-charge engineering. J. Mater. Chem. A 2021, 9, 21357–21365.

[99]

Wu, J.; Xi, Y. H.; Shi, Y. J. Toward wear-resistive, highly durable, and high performance triboelectric nanogenerator through interface liquid lubrication. Nano Energy 2020, 72, 104659.

[100]

Liu, Y. K.; Liu, W. L.; Wang, Z.; He, W. C.; Tang, Q.; Xi, Y.; Wang, X.; Guo, H. Y.; Hu, C. G. Quantifying contact status and the air-breakdown model of charge-excitation triboelectric nanogenerators to maximize charge density. Nat. Commun. 2020, 11, 1599.

[101]

Li, Y. H.; Zhao, Z. H.; Liu, L.; Zhou, L. L.; Liu, D.; Li, S. X.; Chen, S. Y.; Dai, Y. J.; Wang, J.; Wang, Z. L. Improved output performance of triboelectric nanogenerator by fast accumulation process of surface charges. Adv. Energy Mater. 2021, 11, 2100050.

[102]
Zhou, L. L.; Gao, Y. K.; Liu, D.; Liu, L.; Zhao, Z. H.; Li, S. X.; Yuan, W.; Cui, S. N.; Wang, Z. L.; Wang, J. Achieving ultrarobust and humidity-resistant triboelectric nanogenerator by dual-capacitor enhancement system. Adv. Energy Mater., in press, https://doi.org/10.1002/aenm.202101958.
[103]

Lei, R.; Li, S. Y.; Shi, Y. X.; Yang, P.; Tao, X. L.; Zhai, H.; Wang, Z. L.; Chen, X. Y. Largely enhanced output of the non-contact mode triboelectric nanogenerator via a charge excitation based on a high insulation strategy. Adv. Energy Mater. 2022, 12, 2201708.

[104]

Liu, L.; Zhao, Z. H.; Li, Y. H.; Li, X. Y.; Liu, D.; Li, S. X.; Gao, Y. K.; Zhou, L. L.; Wang, J.; Wang, Z. L. Achieving ultrahigh effective surface charge density of direct-current triboelectric nanogenerator in high humidity. Small 2022, 18, 2201402.

[105]

Dai, K. R.; Liu, D.; Yin, Y. J.; Wang, X. F.; Wang, J.; You, Z.; Zhang, H.; Wang, Z. L. Transient physical modeling and comprehensive optimal design of air-breakdown direct-current triboelectric nanogenerators. Nano Energy 2022, 92, 106742.

[106]

Zhao, Z. H.; Dai, Y. J.; Liu, D.; Zhou, L. L.; Li, S. X.; Wang, Z. L.; Wang, J. Rationally patterned electrode of direct-current triboelectric nanogenerators for ultrahigh effective surface charge density. Nat. Commun. 2020, 11, 6186.

[107]

Liu, D.; Zhou, L. L.; Li, S. X.; Zhao, Z. H.; Yin, X.; Yi, Z. Y.; Zhang, C. L.; Li, X. Y.; Wang, J.; Wang, Z. L. Hugely enhanced output power of direct-current triboelectric nanogenerators by using electrostatic breakdown effect. Adv. Mater. Technol. 2020, 5, 2000289.

[108]

Liu, D.; Yin, X.; Guo, H. Y.; Zhou, L. L.; Li, X. Y.; Zhang, C. L.; Wang, J.; Wang, Z. L. A constant current triboelectric nanogenerator arising from electrostatic breakdown. Sci. Adv. 2019, 5, eaav6437.

[109]

Zhao, Z. H.; Zhou, L. L.; Li, S. X.; Liu, D.; Li, Y. H.; Gao, Y. K.; Liu, Y. B.; Dai, Y. J.; Wang, J.; Wang, Z. L. Selection rules of triboelectric materials for direct-current triboelectric nanogenerator. Nat. Commun. 2021, 12, 4686.

[110]

Gao, Y. K.; Liu, D.; Zhou, L. L.; Li, S. X.; Zhao, Z. H.; Yin, X.; Chen, S. Y.; Wang, Z. L.; Wang, J. A robust rolling-mode direct-current triboelectric nanogenerator arising from electrostatic breakdown effect. Nano Energy 2021, 85, 106014.

[111]

Chen, S. Y.; Liu, D.; Zhou, L. L.; Li, S. X.; Zhao, Z. H.; Cui, S. N.; Gao, Y. K.; Li, Y. H.; Wang, Z. L.; Wang, J. Improved output performance of direct-current triboelectric nanogenerator through field enhancing breakdown effect. Adv. Mater. Technol. 2021, 6, 2100195.

[112]

Cui, S. N.; Zhou, L. L.; Liu, D.; Li, S. X.; Liu, L.; Chen, S. Y.; Zhao, Z. H.; Yuan, W.; Wang, Z. L.; Wang, J. Improving performance of triboelectric nanogenerators by dielectric enhancement effect. Matter 2022, 5, 180–193.

[113]

Zhou, L. L.; Liu, D.; Li, S. X.; Zhao, Z. H.; Zhang, C. L.; Yin, X.; Liu, L.; Cui, S. N.; Wang, Z. L.; Wang, J. Rationally designed dual-mode triboelectric nanogenerator for harvesting mechanical energy by both electrostatic induction and dielectric breakdown effects. Adv. Energy Mater. 2020, 10, 2000965.

[114]

Wang, Z. Z.; Zhang, Z.; Chen, Y. K.; Gong, L. K.; Dong, S. C.; Zhou, H.; Lin, Y.; Lv, Y.; Liu, G. X.; Zhang, C. Achieving an ultrahigh direct-current voltage of 130 V by semiconductor heterojunction power generation based on the tribovoltaic effect. Energy Environ. Sci. 2022, 15, 2366–2373.

[115]

Zhang, Z.; Wang, Z. Z.; Chen, Y. K.; Feng, Y.; Dong, S. C.; Zhou, H.; Wang, Z. L.; Zhang, C. Semiconductor contact-electrification-dominated tribovoltaic effect for ultrahigh power generation. Adv. Mater. 2022, 34, 2200146.

[116]

Qiao, W. Y.; Zhao, Z. H.; Zhou, L. L.; Liu, D.; Li, S. X.; Yang, P. Y.; Li, X. Y.; Liu, J. Q.; Wang, J.; Wang, Z. L. Simultaneously enhancing direct-current density and lifetime of tribovotaic nanogenerator via interface lubrication. Adv. Funct. Mater. 2022, 32, 2208544.

[117]

Meng, J.; Pan, C. X.; Li, L. W.; Guo, Z. H.; Xu, F.; Jia, L. Y.; Wang, Z. L.; Pu, X. Durable flexible direct current generation through the tribovoltaic effect in contact–separation mode. Energy Environ. Sci. 2022, 15, 5159–5167.

[118]

Meng, J.; Guo, Z. H.; Pan, C. X.; Wang, L. Y.; Chang, C. Y.; Li, L. W.; Pu, X.; Wang, Z. L. Flexible textile direct-current generator based on the tribovoltaic effect at dynamic metal–semiconducting polymer interfaces. ACS Energy Lett. 2021, 6, 2442–2450.

[119]

Wang, Z.; Liu, W. L.; Hu, J. L.; He, W. C.; Yang, H. K.; Ling, C.; Xi, Y.; Wang, X.; Liu, A. P.; Hu, C. G. Two voltages in contact–separation triboelectric nanogenerator: From asymmetry to symmetry for maximum output. Nano Energy 2020, 69, 104452.

[120]

Xu, L.; Wu, H.; Yao, G.; Chen, L. B.; Yang, X. D.; Chen, B. D.; Huang, X.; Zhong, W.; Chen, X. Y.; Yin, Z. P. et al. Giant voltage enhancement via triboelectric charge supplement channel for self-powered electroadhesion. ACS Nano 2018, 12, 10262–10271.

[121]

Wang, Z.; Tang, Q.; Shan, C. C.; Du, Y.; He, W. C.; Fu, S. K.; Li, G.; Liu, A. P.; Liu, W. L.; Hu, C. G. Giant performance improvement of triboelectric nanogenerator systems achieved by matched inductor design. Energy Environ. Sci. 2021, 14, 6627–6637.

[122]

Wang, Z.; Liu, W. L.; He, W. C.; Guo, H. Y.; Long, L.; Xi, Y.; Wang, X.; Liu, A. P.; Hu, C. G. Ultrahigh electricity generation from low-frequency mechanical energy by efficient energy management. Joule 2021, 5, 441–455.

[123]

Dai, K. R.; Wang, X. F.; Niu, S. M.; Yi, F.; Yin, Y. J.; Chen, L.; Zhang, Y.; You, Z. Simulation and structure optimization of triboelectric nanogenerators considering the effects of parasitic capacitance. Nano Res. 2017, 10, 157–171.

[124]

Yang, Z.; Yang, Y. Y.; Wang, H.; Liu, F.; Lu, Y. J.; Ji, L. H.; Wang, Z. L.; Cheng, J. Charge pumping for sliding-mode triboelectric nanogenerator with voltage stabilization and boosted current. Adv. Energy Mater. 2021, 11, 2101147.

[125]

Bai, Y.; Xu, L.; Lin, S. Q.; Luo, J. J.; Qin, H. F.; Han, K.; Wang, Z. L. Charge pumping strategy for rotation and sliding type triboelectric nanogenerators. Adv. Energy Mater. 2020, 10, 2000605.

[126]

Cheng, X. L.; Miao, L. M.; Song, Y.; Su, Z. M.; Chen, H. T.; Chen, X. X.; Zhang, J. X.; Zhang, H. X. High efficiency power management and charge boosting strategy for a triboelectric nanogenerator. Nano Energy 2017, 38, 438–446.

[127]

Xu, S. X.; Zhang, L.; Ding, W. B.; Guo, H. Y.; Wang, X. H.; Wang, Z. L. Self-doubled-rectification of triboelectric nanogenerator. Nano Energy 2019, 66, 104165.

[128]

Peng, J.; Kang, S. D.; Snyder, G. J. Optimization principles and the figure of merit for triboelectric generators. Sci. Adv. 2017, 3, eaap8576.

Nano Research
Pages 11698-11717
Cite this article:
Liu D, Gao Y, Zhou L, et al. Recent advances in high-performance triboelectric nanogenerators. Nano Research, 2023, 16(9): 11698-11717. https://doi.org/10.1007/s12274-023-5660-8
Topics:
Part of a topical collection:

1703

Views

24

Crossref

28

Web of Science

28

Scopus

1

CSCD

Altmetrics

Received: 29 January 2023
Revised: 14 February 2023
Accepted: 09 March 2023
Published: 20 April 2023
© Tsinghua University Press 2023
Return