AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Natural keratin-based Fe-S1N3 single atom catalyst for insights into the coordination regulation effect of Fenton-like catalysis with high efficiency

Zhiyi Sun1,2Yujuan Wei2Ting Cao3,4Zheng Liu3,4( )Rui Sui5Xiang Li6( )Jiajing Pei7Zhuo Chen1Shuo Wang2( )
Energy & Catalysis Center, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
College of Textile and Garments, Hebei University of Science & Technology, The Innovation Center of Textile and Garment Technology, Hebei 050018, China
State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
SEPA Key Laboratory of Eco-Industry, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
Department of Chemistry, Tsinghua University, Beijing 100084, China
Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China
Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
Show Author Information

Graphical Abstract

A series of Fenton-like single atom catalysts (SACs) for the oxidative degradation of organic pollutants were synthesized by extracting keratin from wool natural fibers to anchor isolated metal sites. Compared with silk fibroin-based samples, the rich disulfide bonds in wool protein act as sulfur sources, introducing highly electronegative N atoms into the catalyst to optimize the local coordination environment of Fe atoms, which is expected to enhance the Fenton-like catalytic performance.

Abstract

Single atom catalysts (SACs) have attracted great attention, yet the quest for highly-efficient catalysts is driven by the current obstacles of ambiguous structure-performance relationship. Here, we report a nature keratin-based Fe-S1N3 SACs with ultrathin two-dimensional (2D) porous carbon nanosheets structure, by controlling the active center through the precise coordination of sulfur and nitrogen. Compared with natural silk-based Fe-N4 catalyst, the Fe-S1N3 SACs exhibit excellent Fenton-like oxidation degradation ability. X-ray absorption fine structure (XAFS) and electron paramagnetic resonance (EPR) results confirm that S doping is conducive to electron transfer, to accurately generate ·OH with high oxidative degradation capacity at the active site. Therefore, the optimized Fe-S1N3 catalyst showed higher oxidation degradation activity for organic pollutant substrates (methylene blue (MB), Rhodamine B (RhB) and phenol), significantly superior to Fe-N4 samples. This work is devoted to the treatment and application of natural fibers, which provides a novel method for the synthesis of SACs and the regulation of atomic coordination environment.

Electronic Supplementary Material

Download File(s)
12274_2023_5661_MOESM1_ESM.pdf (1.2 MB)

References

[1]

Choi, C.; Wang, X. X.; Kwon, S.; Hart, J. L.; Rooney, C. L.; Harmon, N. J.; Sam, Q. P.; Cha, J. J.; Goddard III, W. A.; Elimelech, M. et al. Efficient electrocatalytic valorization of chlorinated organic water pollutant to ethylene. Nat. Nanotechnol. 2023, 18, 160–167.

[2]

Meng, C. C.; Ding, B. F.; Zhang, S. Z.; Cui, L. L.; Ostrikov, K. K.; Huang, Z. Y.; Yang, B.; Kim, J. H.; Zhang, Z. H. Angstrom-confined catalytic water purification within Co-TiOx laminar membrane nanochannels. Nat. Commun. 2022, 13, 4010.

[3]
Xue, C. R.; Shen, Y.; Zhang, Q.; Chang, Q.; Li, N.; Li, Y.; Zheng, W. J.; Hu, S. L.; Yang, J. L. Facile preparation of multifunctional CuxS/S/rGO composite for all-round residual water remediation during interfacial solar driven water evaporation process. Nano Res. , in press,DOI: 10.1007/s12274-022-5225-2.
[4]

Guo, Z.; Xie, Y. B.; Xiao, J. D.; Zhao, Z. J.; Wang, Y. X.; Xu, Z. M.; Zhang, Y.; Yin, L. C.; Cao, H. B.; Gong, J. L. Single-atom Mn-N4 site-catalyzed peroxone reaction for the efficient production of hydroxyl radicals in an acidic solution. J. Am. Chem. Soc. 2019, 141, 12005–12010.

[5]

Cai, Y. H.; Wu, J. F.; Wang, K. L.; Dong, Y. M.; Hu, J. D.; Qu, J. F.; Tian, D.; Li, J. Z.; Fu, Q. L. Thermo-controlled, self-released smart wood tailored by nanotechnology for fast clean-up of highly viscous liquids. SmartMat 2023, 4, e1133.

[6]
Chen, C.; Chen, Z. Q.; Zhong, J. X.; Song, X.; Chen, D. F.; Liu, S. J.; Cheong, W. C.; Li, J. Z.; Tan, X.; He, C. et al. Regulating electronic structure of CoN4 with axial Co-S for promoting oxygen reduction and Zn-air battery performance. Nano Res. , in press,DOI: 10.1007/s12274-022-5164-y.
[7]

Zhang, Y. J.; Huang, G. X.; Winter, L. R.; Chen, J. J.; Tian, L. L.; Mei, S. C.; Zhang, Z.; Chen, F.; Guo, Z. Y.; Ji, R. et al. Simultaneous nanocatalytic surface activation of pollutants and oxidants for highly efficient water decontamination. Nat. Commun. 2022, 13, 3005.

[8]

Hua, I.; Hoffmann, M. R. Optimization of ultrasonic irradiation as an advanced oxidation technology. Environ. Sci. Technol. 1997, 31, 2237–2243.

[9]

Kim, J.; Zhang, T. Q.; Liu, W.; Du, P. H.; Dobson, J. T.; Huang, C. H. Advanced oxidation process with peracetic acid and Fe(II) for contaminant degradation. Environ. Sci. Technol. 2019, 53, 13312–13322.

[10]

Liu, S. A.; Liu, D.; Sun, Y. L.; Xiao, P. Y.; Lin, H. J.; Chen, J. R.; Wu, X. L.; Duan, X. G.; Wang, S. B. Enzyme-mimicking single-atom FeN4 sites for enhanced photo-Fenton-like reactions. Appl. Catal. B:Environ. 2022, 310, 121327.

[11]
Li, M. H.; Chen, J. X.; Wu, W. W.; Wu, S. L.; Xu, L. L.; Dong, S. J. Diatomic Fe-Fe catalyst enhances the ability to degrade organic contaminants by nonradical peroxymonosulfate activation system. Nano Res. , in press,DOI: 10.1007/s12274-022-5124-6.
[12]

Kirchon, A.; Zhang, P.; Li, J. L.; Joseph, E. A.; Chen, W. M.; Zhou, H. C. Effect of isomorphic metal substitution on the fenton and photo-fenton degradation of methylene blue using Fe-based metal-organic frameworks. ACS Appl. Mater. Interfaces 2020, 12, 9292–9299.

[13]

An, S. F.; Zhang, G. H.; Wang, T. W.; Zhang, W. N.; Li, K. Y.; Song, C. S.; Miller, J. T.; Miao, S.; Wang, J. H.; Guo, X. W. High-density ultra-small clusters and single-atom Fe sites embedded in graphitic carbon nitride (g-C3N4) for highly efficient catalytic advanced oxidation processes. ACS Nano 2018, 12, 9441–9450.

[14]

Wang, L. C.; Chang, L. C.; Chen, W. Q.; Chien, Y. H.; Chang, P. Y.; Pao, C. W.; Liu, Y. F.; Sheu, H. S.; Su, W. P.; Yeh, C. H. et al. Atomically dispersed golds on degradable zero-valent copper nanocubes augment oxygen driven Fenton-like reaction for effective orthotopic tumor therapy. Nat. Commun. 2022, 13, 7772.

[15]

Xu, J. W.; Zheng, X. L.; Feng, Z. P.; Lu, Z. Y.; Zhang, Z. W.; Huang, W.; Li, Y. B.; Vuckovic, D.; Li, Y. Q.; Dai, S. et al. Organic wastewater treatment by a single-atom catalyst and electrolytically produced H2O2. Nat. Sustain. 2021, 4, 233–241.

[16]

Sun, S.; Chen, Q.; Li, Y. K.; Yu, Y.; Li, Z. J.; Lin, H. W. Tumor-specific and photothermal-augmented chemodynamic therapy by ferrocene-carbon dot-crosslinked nanoparticles. SmartMat 2022, 3, 311–322.

[17]

Wei, Z. C.; Wang, J.; Guo, S.; Tan, S. C. Towards highly salt-rejecting solar interfacial evaporation: Photothermal materials selection, structural designs, and energy management. Nano Res. Energy 2022, 1, 9120014.

[18]

Li, X. N.; Huang, X.; Xi, S. B.; Miao, S.; Ding, J.; Cai, W. Z.; Liu, S.; Yang, X. L.; Yang, H. B.; Gao, J. J. et al. Single cobalt atoms anchored on porous N-doped graphene with dual reaction sites for efficient fenton-like catalysis. J. Am. Chem. Soc. 2018, 140, 12469–12475.

[19]

Olloqui-Sariego, J. L.; Zakharova, G. S.; Poloznikov, A. A.; Calvente, J. J.; Hushpulian, D. M.; Gorton, L.; Andreu, R. Fenton-like inactivation of tobacco peroxidase electrocatalysis at negative potentials. ACS Catal. 2016, 6, 7452–7457.

[20]

Guo, F. J.; Zhang, M. Y.; Yi, S. C.; Li, X. X.; Xin, R.; Yang, M.; Liu, B.; Chen, H. B.; Li, H. M.; Liu, Y. J. Metal-coordinated porous polydopamine nanospheres derived Fe3N-FeCo encapsulated N-doped carbon as a highly efficient electrocatalyst for oxygen reduction reaction. Nano Res. Energy 2022, 1, 9120027.

[21]

H. S.; Zhou, X. Y.; Dong, J. C.; Li, A.; Zhao, X.; Liu, Q. H.; Lin, Y.; Pei, J. J.; Li, Z.; Jiang, Z. L. et al. Engineering unsymmetrically coordinated Cu-S1N3 single atom sites with enhanced oxygen reduction activity. Nat. Commun. 2020, 11, 3049.

[22]

Qu, M.; Chen, Z.; Sun, Z. Y.; Zhou, D. N.; Xu, W. J.; Tang, H.; Gu, H. F.; Liang, T.; Hu, P. F.; Li, G. W. et al. Rational design of asymmetric atomic Ni-P1N3 active sites for promoting electrochemical CO2 reduction. Nano Res. 2023, 16, 2170–2176.

[23]

Peng, J. X.; Yang, W. J.; Jia, Z. H.; Jiao, L.; Jiang, H. L. Axial coordination regulation of MOF-based single-atom Ni catalysts by halogen atoms for enhanced CO2 electroreduction. Nano Res. 2022, 15, 10063–10069.

[24]

Zhao, Q. L.; Wang, Y. A.; Li, M.; Zhu, S. Q.; Li, T. H.; Yang, J. X.; Lin, T.; Delmo, E. P.; Wang, Y. N.; Jang, J. et al. Organic frameworks confined Cu single atoms and nanoclusters for tandem electrocatalytic CO2 reduction to methane. SmartMat 2022, 3, 183–193.

[25]

Li, L. L.; Hasan, I. M. U.; Farwa; He, R. N.; Peng, L. W.; Xu, N. N.; Niazi, N. K.; Zhang, J. N.; Qiao, J. L. Copper as a single metal atom based photo-, electro-, and photoelectrochemical catalyst decorated on carbon nitride surface for efficient CO2 reduction: A review. Nano Res. Energy 2022, 1, e9120015.

[26]

Ahmad, T.; Liu, S.; Sajid, M.; Li, K.; Ali, M.; Liu, L.; Chen, W. Electrochemical CO2 reduction to C2+ products using Cu-based electrocatalysts: A review. Nano Res. Energy 2022, 1, e9120021.

[27]

Liang, H. D.; Zheng, Y.; Loh, L.; Hu, Z. H.; Liang, Q. J.; Han, C.; Bosman, M.; Chen, W.; Bettiol, A. A. Robust n-type doping of WSe2 enabled by controllable proton irradiation. Nano Res. 2023, 16, 1220–1227.

[28]

Fan, Y.; Liu, S.; Yi, Y.; Rong, H.; Zhang, J. Catalytic Nanomaterials toward Atomic Levels for Biomedical Applications: From Metal Clusters to Single-Atom Catalysts. ACS Nano 2021, 15, 2005–2037.

[29]

Cui, T. T.; Wang, Y. P.; Ye, T.; Wu, J.; Chen, Z. Q.; Li, J.; Lei, Y. P.; Wang, D. S.; Li, Y. D. Engineering dual single-atom sites on 2D ultrathin N-doped carbon nanosheets attaining ultra-low-temperature zinc-air battery. Angew. Chem., Int. Ed. 2022, 61, e202115219.

[30]

Xu, X. Y.; Wu, J. Y.; Meng, Z. H.; Li, Y. R.; Huang, Q. L.; Qi, Y.; Liu, Y. F.; Zhan, D.; Liu, X. Y. Enhanced exfoliation of biocompatible MoS2 nanosheets by wool keratin. ACS Appl. Nano Mater. 2018, 1, 5460–5469.

[31]

Wang, C. Y.; Chen, W. X.; Xia, K. L.; Xie, N. H.; Wang, H. M.; Zhang, Y. Y. Silk-derived 2D porous carbon nanosheets with atomically-dispersed Fe-Nx-C sites for highly efficient oxygen reaction catalysts. Small 2019, 15, 1804966.

[32]

Zhang, B.; Fan, T. J.; Xie, N.; Nie, G. H.; Zhang, H. Versatile applications of metal single-atom @ 2D material nanoplatforms. Adv. Sci. 2019, 6, 1901787.

[33]

Wang, B. Q.; Chen, S. H.; Zhang, Z. D.; Wang, D. S. Low-dimensional material supported single-atom catalysts for electrochemical CO2 reduction. SmartMat 2022, 3, 84–110.

[34]

Liu, Q.; Hu, Y. H.; Yu, X. R.; Qin, Y. F.; Meng, T.; Hu, X. L. The pursuit of commercial silicon-based microparticle anodes for advanced lithium-ion batteries: A review. Nano Res. Energy 2022, 1, 9120037.

[35]

Zhu, Y. Q.; Sun, W. M.; Luo, J.; Chen, W. X.; Cao, T.; Zheng, L. R.; Dong, J. C.; Zhang, J.; Zhang, M. L.; Han, Y. H. et al. A cocoon silk chemistry strategy to ultrathin N-doped carbon nanosheet with metal single-site catalysts. Nat. Commun. 2018, 9, 3861.

[36]

Feng, L.; Yang, W. X.; Hou, Y. M.; Sun, Z. Y.; Hu, Y. N.; Li, X. Y.; Hu, X. M.; Zhang, S.; Wang, S.; Chen, W. X. Alkyne semihydrogenation over Pd nanoparticles embedded in N, S-doped carbon nanosheets. ACS Appl. Nano Mater. 2021, 4, 9052–9059.

[37]

Wang, L. L.; Zhu, C. W.; Xu, M. Q.; Zhao, C. L.; Gu, J.; Cao, L. N.; Zhang, X. H.; Sun, Z. H.; Wei, S. Q.; Zhou, W. et al. Boosting activity and stability of metal single-atom catalysts via regulation of coordination number and local composition. J. Am. Chem. Soc. 2021, 143, 18854–18858.

[38]

Sun, Z. Y.; Hu, Y. N.; Zhou, D. N.; Sun, M. R.; Wang, S.; Chen, W. X. Factors influencing the performance of copper-bearing catalysts in the CO2 reduction system. ACS Energy Lett. 2021, 6, 3992–4022.

[39]

Yang, T.; Mao, X. N.; Zhang, Y.; Wu, X. P.; Wang, L.; Chu, M. Y.; Pao, C. W.; Yang, S. Z.; Xu, Y.; Huang, X. Q. Coordination tailoring of Cu single sites on C3N4 realizes selective CO2 hydrogenation at low temperature. Nat. Commun. 2021, 12, 6022.

[40]
Miao, X.; Chen, W. X.; Lv, S. N.; Li, A. R.; Li, Y. H.; Zhang, Q. H.; Yue, Y. H.; Zhao, H. W.; Liu, L. M.; Guo, S. J. et al. Stabilizing single-atomic Pt by forming Pt-Fe bonds for efficient diboration of alkynes. Adv. Mater. , in press,DOI: 10.1002/adma.202211790.
[41]

Ji, S. F.; Jiang, B.; Hao, H. G.; Chen, Y. J.; Dong, J. C.; Mao, Y.; Zhang, Z. D.; Gao, R.; Chen, W. X.; Zhang, R. F. et al. Matching the kinetics of natural enzymes with a single-atom iron nanozyme. Nat. Catal. 2021, 4, 407–417.

[42]

Chen, J. G. NEXAFS investigations of transition metal oxides, nitrides, carbides, sulfides and other interstitial compounds. Surf. Sci. Rep. 1997, 30, 1–152.

[43]
Lin, L. H.; Li, H.; Gu, H. F.; Sun, Z. Y.; Huang, J.; Qian, Z. N.; Li, H.; Liu, J. Z.; Xi, H. Y.; Wu, P. F. et al. Asymmetrically coordinated single-atom iron nanozymes with Fe-N1C2 structure: A peroxidase mimetic for melatonin detection. Nano Res. , in press,DOI: 10.1007/s12274-022-5211-8.
[44]

Jiao, L.; Zhang, R.; Wan, G.; Yang, W. J.; Wan, X.; Zhou, H.; Shui, J. L.; Yu, S. H.; Jiang, H. L. Nanocasting SiO2 into metal-organic frameworks imparts dual protection to high-loading Fe single-atom electrocatalysts. Nat. Commun. 2020, 11, 2831.

[45]

Fei, H. L.; Dong, J. C.; Feng, Y. X.; Allen, C. S.; Wan, C. Z.; Volosskiy, B.; Li, M. F.; Zhao, Z. P.; Wang, Y. L.; Sun, H. T. et al. General synthesis and definitive structural identification of MN4C4 single-atom catalysts with tunable electrocatalytic activities. Nat. Catal. 2018, 1, 63–72.

[46]

Liu, J. J.; Gong, Z. C.; Allen, C.; Ge, W.; Gong, H. S.; Liao, J. W.; Liu, J. B.; Huang, K.; Yan, M. M.; Liu, R. et al. Edge-hosted Fe-N3 sites on a multiscale porous carbon framework combining high intrinsic activity with efficient mass transport for oxygen reduction. Chem Catal. 2021, 1, 1291–1307.

[47]

Liu, J. J.; Wei, Z. X.; Gong, Z. C.; Yan, M. M.; Hu, Y. F.; Zhao, S. L.; Ye, G. L.; Fei, H. L. Single-atom CoN4 sites with elongated bonding induced by phosphorus doping for efficient H2O2 electrosynthesis. Appl. Catal. B:Environ. 2023, 324, 122267.

[48]

Su, X. Z.; Jiang, Z. L.; Zhou, J.; Liu, H. J.; Zhou, D. N.; Shang, H. S.; Ni, X. M.; Peng, Z.; Yang, F.; Chen, W. X. et al. Complementary Operando Spectroscopy identification of in-situ generated metastable charge-asymmetry Cu2-CuN3 clusters for CO2 reduction to ethanol. Nat. Commun. 2022, 13, 1322.

[49]

Ji, Y. J.; Liu, S. M.; Zhu, H. D.; Xu, W. Q.; Jiang, R. H.; Zhang, Y.; Yu, J.; Chen, W. X.; Jia, L. H.; Jiang, J. G. et al. Isolating contiguous Ir atoms and forming Ir-W intermetallics with negatively charged Ir for efficient NO reduction by CO. Adv. Mater. 2022, 34, 2205703.

[50]

Zhang, Z. T.; Yang, S. M.; Jiang, R.; Sheng, T.; Shi, C. F.; Chen, Y. G.; Wang, L. Y. Intensifying uneven charge distribution via geometric distortion engineering in atomically dispersed M-Nx/S sites for efficient oxygen electroreduction. Nano Res. 2022, 15, 8928–8935.

[51]

Dai, K.; Lu, L. H.; Liu, Q.; Zhu, G. P.; Wei, X. Q.; Bai, J.; Xuan, L. L.; Wang, H. Sonication assisted preparation of graphene oxide/graphitic-C3N4 nanosheet hybrid with reinforced photocurrent for photocatalyst applications. Dalton Trans. 2014, 43, 6295–6299.

[52]

Gao, Y. W.; Li, S. M.; Li, Y. X.; Yao, L. Y.; Zhang, H. Accelerated photocatalytic degradation of organic pollutant over metal-organic framework MIL-53(Fe) under visible LED light mediated by persulfate. Appl. Catal. B:Environ. 2017, 202, 165–174.

[53]

Zhao, X. D.; Liu, Q.; Li, X. L.; Li, H.; Shen, Z. R.; Ji, H. M.; Ma, T. Y. Exited state absorption upconversion induced by structural defects for photocatalysis with a breakthrough efficiency. Angew. Chem., Int. Ed. 2023, 62, e202219214.

[54]

Li, X. N.; Ao, Z. M.; Liu, J. Y.; Sun, H. Q.; Rykov, A. I.; Wang, J. H. Topotactic transformation of metal-organic frameworks to graphene-encapsulated transition-metal nitrides as efficient fenton-like catalysts. ACS Nano 2016, 10, 11532–11540.

[55]

Yamazaki, I.; Piette, L. H. EPR spin-trapping study on the oxidizing species formed in the reaction of the ferrous ion with hydrogen peroxide. J. Am. Chem. Soc. 1991, 113, 7588–7593.

[56]

Song, W. L.; Ge, P.; Ke, Q.; Sun, Y. L.; Chen, F.; Wang, H.; Shi, Y. P.; Wu, X. L.; Lin, H. J.; Chen, J. R. et al. Insight into the mechanisms for hexavalent chromium reduction and sulfisoxazole degradation catalyzed by graphitic carbon nitride: The Yin and Yang in the photo-assisted processes. Chemosphere 2019, 221, 166–174.

Nano Research
Pages 9003-9011
Cite this article:
Sun Z, Wei Y, Cao T, et al. Natural keratin-based Fe-S1N3 single atom catalyst for insights into the coordination regulation effect of Fenton-like catalysis with high efficiency. Nano Research, 2023, 16(7): 9003-9011. https://doi.org/10.1007/s12274-023-5661-7
Topics:

897

Views

12

Crossref

12

Web of Science

10

Scopus

0

CSCD

Altmetrics

Received: 06 February 2023
Revised: 02 March 2023
Accepted: 09 March 2023
Published: 02 April 2023
© Tsinghua University Press 2023
Return