AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

A generalized synthesis method for freestanding multiferroic two-dimensional layered supercell oxide films via a sacrificial buffer layer

Jianan Shen1Benson Kunhung Tsai1Ke Xu1Anyu Shang1James P. Barnard1Yizhi Zhang1Rahul Tripathi2,3Zhihong Chen2,3Xinghang Zhang1Haiyan Wang1,2( )
School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907, USA
Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907, USA
Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, USA
Show Author Information

Graphical Abstract

A freestanding Bi2NiMnO6/CeO2 multiferroic layered supercell oxide thin film was synthesized via a wet-transfer method.

Abstract

Multiferroics are an intriguing family of materials due to the simultaneous presence of two ferroic orderings, namely, ferroelectricity and ferromagnetism. They are scientifically and technologically important and have numerous potential applications, such as four-state logic memories and multiferroic tunneling junctions. However, the growth of epitaxial single-phase multiferroic thin films typically requires single crystalline oxide substrates, which hinders their future integration with Si-based devices. In this study, we report a generalized synthesis method that uses the polydimethylsiloxane (PDMS)-assisted wet-etching method with an Sr3Al2O6 (SAO) sacrificial layer to transfer freestanding single-phase multiferroic Bi2NiMnO6 (BNMO) films from conventional SrTiO3 (STO) substrates onto a Si wafer. The structures and properties of the films have been characterized before and after the transfer. These transferred films possess good multiferroic properties on Si wafers, indicating full compatibility with modern Si technology. This method can be generally applicable to other Bi-based multiferroic materials as well. Lastly, the original STO substrates after the transfer process have been recycled for preparing new batches of freestanding BNMO films, indicating a low-cost and sustainable method for manufacturing large-volume freestanding complex oxide thin films.

Electronic Supplementary Material

Download File(s)
12274_2023_5662_MOESM1_ESM.pdf (4.2 MB)

References

[1]

Smolenskii, G. A.; Bokov, V. A. Coexistence of magnetic and electric ordering in crystals. J. Appl. Phys. 1964, 35, 915–918.

[2]

Ascher, E.; Rieder, H.; Schmid, H.; Stössel, H. Some properties of ferromagnetoelectric nickel-iodine boracite, Ni3B7O13I. J. Appl. Phys. 1966, 37, 1404–1405.

[3]

Wang, J.; Neaton, J. B.; Zheng, H.; Nagarajan, V.; Ogale, S. B.; Liu, B.; Viehland, D.; Vaithyanathan, V.; Schlom, D. G.; Waghmare, U. V. et al. Epitaxial BiFeO3 multiferroic thin film heterostructures. Science 2003, 299, 1719–1722.

[4]

Eerenstein, W.; Mathur, N. D.; Scott, J. F. Multiferroic and magnetoelectric materials. Nature 2006, 442, 759–765.

[5]

Hill, N. A. Why are there so few magnetic ferroelectrics. J. Phys. Chem. B 2000, 104, 6694–6709.

[6]

Seshadri, R.; Hill, N. A. Visualizing the role of Bi 6s “lone pairs” in the off-center distortion in ferromagnetic BiMnO3. Chem. Mater. 2001, 13, 2892–2899.

[7]

Spaldin, N. A. Multiferroics: From the cosmically large to the subatomically small. Nat. Rev. Mater. 2017, 2, 17017.

[8]

Spaldin, N. A. Multiferroics: Past, present, and future. MRS Bull. 2017, 42, 385–390.

[9]

Spaldin, N. A.; Ramesh, R. Advances in magnetoelectric multiferroics. Nat. Mater. 2019, 18, 203–212.

[10]

Spaldin, N. A. Multiferroics beyond electric-field control of magnetism. Proc. Roy. Soc. A Mathem. Phys. Eng. Sci. 2020, 476, 20190542.

[11]

Behera, B.; Sutar, B. C.; Pradhan, N. R. Recent progress on 2D ferroelectric and multiferroic materials, challenges, and opportunity. Emergent Mater. 2021, 4, 847–863.

[12]

Catalan, G.; Scott, J. F. Physics and applications of bismuth ferrite. Adv. Mater. 2009, 21, 2463–2485.

[13]

Burns, S. R.; Sando, D.; Xu, B.; Dupé, B.; Russell, L.; Deng, G. C.; Clements, R.; Paull, O. H. C.; Seidel, J.; Bellaiche, L. et al. Expansion of the spin cycloid in multiferroic BiFeO3 thin films. npj Quantum Mater. 2019, 4, 18.

[14]

Srihari, N. V.; Vinayakumar, K. B.; Nagaraja, K. K. Magnetoelectric coupling in bismuth ferrite-challenges and perspectives. Coatings 2020, 10, 1221.

[15]

Pálová, L.; Chandra, P.; Rabe, K. M. Multiferroic BiFeO3-BiMnO3 nanoscale checkerboard from first principles. Phys. Rev. B 2010, 82, 075432.

[16]

Chen, A. P.; Zhou, H. H.; Bi, Z. X.; Zhu, Y. Y.; Luo, Z. P.; Bayraktaroglu, A.; Phillips, J.; Choi, E. M.; MacManus-Driscoll, J. L.; Pennycook, S. J. et al. A new class of room-temperature multiferroic thin films with bismuth-based supercell structure. Adv. Mater. 2013, 25, 1028–1032.

[17]

Zhang, W. R.; Li, M. T.; Chen, A. P.; Li, L. G.; Zhu, Y. Y.; Xia, Z. H.; Lu, P.; Boullay, P.; Wu, L. J.; Zhu, Y. M. et al. Two-dimensional layered oxide structures tailored by self-assembled layer stacking via interfacial strain. ACS Appl. Mater. Interfaces 2016, 8, 16845–16851.

[18]

Li, L. G.; Boullay, P.; Lu, P.; Wang, X. J.; Jian, J.; Huang, J. J.; Gao, X. Y.; Misra, S.; Zhang, W. R.; Perez, O. et al. Novel layered supercell structure from Bi2AlMnO6 for multifunctionalities. Nano Lett. 2017, 17, 6575–6582.

[19]

Misra, S.; Li, L. G.; Gao, X. Y.; Jian, J.; Qi, Z. M.; Zemlyanov, D.; Wang, H. Y. Tunable physical properties in BiAl1−xMnxO3 thin films with novel layered supercell structures. Nanoscale Adv. 2020, 2, 315–322.

[20]

He, Z. H.; Gao, X. Y.; Zhang, D.; Lu, P.; Wang, X. J.; Kalaswad, M.; Rutherford, B. X.; Wang, H. Y. Tailorable multifunctionalities in ultrathin 2D Bi-based layered supercell structures. Nanoscale 2021, 13, 16672–16679.

[21]

Li, L. G.; Misra, S.; Gao, X. Y.; Liu, J. C.; Wang, H.; Huang, J. J.; Zhang, B.; Lu, P.; Wang, H. Y. Novel vertically aligned nanocomposite of Bi2WO6-Co3O4 with room-temperature multiferroic and anisotropic optical response. Nano Res 2021, 14, 4789–4794.

[22]

Shen, J. N.; He, Z. H.; Zhang, D.; Lu, P.; Deitz, J.; Shang, Z. X.; Kalaswad, M.; Wang, H. H.; Xu, X. S.; Wang, H. Y. Tunable physical properties in Bi-based layered supercell multiferroics embedded with Au nanoparticles. Nanoscale Adv. 2022, 4, 3054–3064.

[23]

Zhang, D.; Gao, X. Y.; Lu, J. J.; Lu, P.; Deitz, J.; Shen, J. N.; Dou, H. Y.; He, Z. H.; Shang, Z. X.; Wade, C. A. et al. Novel self-assembled two-dimensional layered oxide structure incorporated with Au nanoinclusions towards multifunctionalities. Nano Res. 2023, 16, 1465–1472.

[24]

Gao, X. Y.; Li, L. G.; Zhang, D.; Wang, X. J.; Jian, J.; He, Z. H.; Wang, H. Y. Novel layered Bi3MoMTO9 (MT = Mn, Fe, Co and Ni) thin films with tunable multifunctionalities. Nanoscale 2020, 12, 5914–5921.

[25]

Li, L.; Boullay, P.; Cheng, J.; Lu, P.; Wang, X.; Steciuk, G.; Huang, J.; Jian, J.; Gao, X.; Zhang, B. et al. Self-assembled two-dimensional layered oxide supercells with modulated layer stacking and tunable physical properties. Mater. Today Nano 2019, 6, 100037.

[26]

Azuma, M.; Takata, K.; Saito, T.; Ishiwata, S.; Shimakawa, Y.; Takano, M. Designed ferromagnetic, ferroelectric Bi2NiMnO6. J. Am. Chem. Soc. 2005, 127, 8889–8892.

[27]

Valencia, S.; Crassous, A.; Bocher, L.; Garcia, V.; Moya, X.; Cherifi, R. O.; Deranlot, C.; Bouzehouane, K.; Fusil, S.; Zobelli, A. et al. Interface-induced room-temperature multiferroicity in BaTiO3. Nat. Mater. 2011, 10, 753–758.

[28]

Wang, W. B.; Zhao, J.; Wang, W. B.; Gai, Z.; Balke, N.; Chi, M. F.; Lee, H. N.; Tian, W.; Zhu, L. Y.; Cheng, X. M. et al. Room-temperature multiferroic hexagonal LuFeO3 films. Phys. Rev. Lett. 2013, 110, 237601.

[29]

Becher, C.; Maurel, L.; Aschauer, U.; Lilienblum, M.; Magén, C.; Meier, D.; Langenberg, E.; Trassin, M.; Blasco, J.; Krug, I. P. et al. Strain-induced coupling of electrical polarization and structural defects in SrMnO3 films. Nat. Nanotechnol. 2015, 10, 661–665.

[30]

Li, Y. X.; Wang, Z. C.; Yao, J. J.; Yang, T. N.; Wang, Z. G.; Hu, J. M.; Chen, C. L.; Sun, R.; Tian, Z. P.; Li, J. F. et al. Magnetoelectric quasi-(0-3) nanocomposite heterostructures. Nat. Commun. 2015, 6, 6680.

[31]

Mundy, J. A.; Brooks, C. M.; Holtz, M. E.; Moyer, J. A.; Das, H.; Rébola, A. F.; Heron, J. T.; Clarkson, J. D.; Disseler, S. M.; Liu, Z. Q. et al. Atomically engineered ferroic layers yield a room-temperature magnetoelectric multiferroic. Nature 2016, 537, 523–527.

[32]

Kumah, D. P.; Ngai, J. H.; Kornblum, L. Epitaxial oxides on semiconductors: From fundamentals to new devices. Adv. Funct. Mater. 2020, 30, 1901597.

[33]

Averyanov, D. V.; Sokolov, I. S.; Karateev, I. A.; Taldenkov, A. N.; Parfenov, O. E.; Tokmachev, A. M.; Storchak, V. G. Universal interface between functional oxides and silicon. Adv. Funct. Mater. 2021, 31, 2010269.

[34]

Kalaswad, M.; Zhang, D.; Gao, X. Y.; Contreras, L. L.; Wang, H.; Wang, X. J.; Wang, H. Y. Integration of hybrid plasmonic Au-BaTiO3 metamaterial on silicon substrates. ACS Appl. Mater. Interfaces 2019, 11, 45199–45206.

[35]

Wang, Z.; Paik, H.; Chen, Z.; Muller, D. A.; Schlom, D. G. Epitaxial integration of high-mobility La-doped BaSnO3 thin films with silicon. APL Mater. 2019, 7, 022520.

[36]

Zhang, D.; Kalaswad, M.; Wang, H. Y. Self-assembled vertically aligned nanocomposite systems integrated on silicon substrate: Progress and future perspectives. J. Vac. Sci. Technol. A 2022, 40, 010802.

[37]

Huang, J. J.; Gellatly, A.; Kauffmann, A.; Sun, X.; Wang, H. Y. Exchange bias effect along vertical interfaces in La0.7Sr0.3MnO3: NiO vertically aligned nanocomposite thin films integrated on silicon substrates. Cryst. Growth Des. 2018, 18, 4388–4394.

[38]

Wang, H.; Khatkhatay, F.; Jian, J.; Huang, J. J.; Fan, M.; Wang, H. Y. Strain tuning of ferroelectric and optical properties of rhombohedral-like BiFeO3 thin films on SrRuO3-buffered substrates. Mater. Res. Bull. 2019, 110, 120–125.

[39]

Kalaswad, M.; Zhang, B.; Wang, X. J.; Wang, H.; Gao, X. Y.; Wang, H. Y. Integration of highly anisotropic multiferroic BaTiO3-Fe nanocomposite thin films on Si towards device applications. Nanoscale Adv. 2020, 2, 4172–4178.

[40]

Zhong, W. M.; Liu, Q. X.; Tang, X. G.; Jiang, Y. P.; Li, W. H.; Li, W. P.; Cheng, T. D. Ferroelectric diode effect with temperature stability of double perovskite Bi2NiMnO6 thin films. Nanomaterials 2019, 9, 1783.

[41]

Lu, D.; Baek, D. J.; Hong, S. S.; Kourkoutis, L. F.; Hikita, Y.; Hwang, H. Y. Synthesis of freestanding single-crystal perovskite films and heterostructures by etching of sacrificial water-soluble layers. Nat. Mater. 2016, 15, 1255–1260.

[42]

Cheng, Y. X.; Li, Y. J.; Dong, G. H.; Peng, B.; Zhou, Z. Y.; Liu, M. Flexible multiferroic heterostructure based on freestanding single-crystalline BaTiO3 membranes for spintronic devices. Adv. Electron. Mater. 2022, 8, 2100923.

[43]

Jin, C.; Zhu, Y. M.; Li, X. W.; An, F.; Han, W. Q.; Liu, Q.; Hu, S. X.; Ji, Y. J.; Xu, Z. D.; Hu, S. B. et al. Super-flexible freestanding BiMnO3 membranes with stable ferroelectricity and ferromagnetism. Adv. Sci. 2021, 8, 2102178.

[44]

Han, L.; Addiego, C.; Prokhorenko, S.; Wang, M. Y.; Fu, H. Y.; Nahas, Y.; Yan, X. X.; Cai, S. H.; Wei, T. Q.; Fang, Y. H. et al. High-density switchable skyrmion-like polar nanodomains integrated on silicon. Nature 2022, 603, 63–67.

[45]

Peng, H. N.; Lu, N. P.; Yang, S. Z.; Lyu, Y. J.; Liu, Z. W.; Bu, Y. F.; Shen, S. C.; Li, M. Q.; Li, Z. L.; Gao, L. et al. A generic sacrificial layer for wide-range freestanding oxides with modulated magnetic anisotropy. Adv. Funct. Mater. 2022, 32, 2111907.

[46]

Salles, P.; Guzmán, R.; Zanders, D.; Quintana, A.; Fina, I.; Sánchez, F.; Zhou, W.; Devi, A.; Coll, M. Bendable polycrystalline and magnetic CoFe2O4 membranes by chemical methods. ACS Appl. Mater. Interfaces 2022, 14, 12845–12854.

[47]

Sun, H. Y.; Wang, J. R.; Wang, Y. S.; Guo, C. Q.; Gu, J. H.; Mao, W.; Yang, J. F.; Liu, Y. W.; Zhang, T. T.; Gao, T. Y. et al. Nonvolatile ferroelectric domain wall memory integrated on silicon. Nat. Commun. 2022, 13, 4332.

[48]

Zhong, G. K.; An, F.; Qu, K.; Dong, Y. Q.; Yang, Z. Z.; Dai, L. Y. F.; Xie, S. H.; Huang, R.; Luo, Z. L.; Li, J. Y. Highly flexible freestanding BaTiO3-CoFe2O4 heteroepitaxial nanostructure self-assembled with room-temperature multiferroicity. Small 2022, 18, 2104213.

[49]

Pesquera, D.; Khestanova, E.; Ghidini, M.; Zhang, S.; Rooney, A. P.; Maccherozzi, F.; Riego, P.; Farokhipoor, S.; Kim, J.; Moya, X. et al. Large magnetoelectric coupling in multiferroic oxide heterostructures assembled via epitaxial lift-off. Nat. Commun. 2020, 11, 3190.

[50]

Lindemann, S.; Irwin, J.; Kim, G. Y.; Wang, B.; Eom, K.; Wang, J. J.; Hu, J. M.; Chen, L. Q.; Choi, S. Y.; Eom, C. B. et al. Low-voltage magnetoelectric coupling in membrane heterostructures. Sci. Adv. 2021, 7, eabh2294.

[51]

Ji, D. X.; Cai, S. H.; Paudel, T. R.; Sun, H. Y.; Zhang, C. C.; Han, L.; Wei, Y. F.; Zang, Y. P.; Gu, M.; Zhang, Y. et al. Freestanding crystalline oxide perovskites down to the monolayer limit. Nature 2019, 570, 87–90.

[52]

Jin, C.; Zhu, Y. M.; Han, W. Q.; Liu, Q.; Hu, S. X.; Ji, Y.; Xu, Z.; Hu, S.; Ye, M.; Chen, L. Exchange bias in flexible freestanding La0.7Sr0.3MnO3/BiFeO3 membranes. Appl. Phys. Lett. 2020, 117, 252902.

[53]

Yang, A. J.; Han, K.; Huang, K.; Ye, C.; Wen, W.; Zhu, R. X.; Zhu, R.; Xu, J.; Yu, T.; Gao, P. et al. Van der Waals integration of high-κ perovskite oxides and two-dimensional semiconductors. Nat. Electron. 2022, 5, 233–240.

[54]

Park, D. S.; Hadad, M.; Riemer, L. M.; Ignatans, R.; Spirito, D.; Esposito, V.; Tileli, V.; Gauquelin, N.; Chezganov, D.; Jannis, D. et al. Induced giant piezoelectricity in centrosymmetric oxides. Science 2022, 375, 653–657.

[55]

Zhu, Y. Y.; Chen, A. P.; Zhou, H. H.; Zhang, W. R.; Narayan, J.; MacManus-Driscoll, J. L.; Jia, Q. X.; Wang, H. Y. Research updates: Epitaxial strain relaxation and associated interfacial reconstructions: The driving force for creating new structures with integrated functionality. APL Mater. 2013, 1, 050702.

Nano Research
Pages 10559-10566
Cite this article:
Shen J, Tsai BK, Xu K, et al. A generalized synthesis method for freestanding multiferroic two-dimensional layered supercell oxide films via a sacrificial buffer layer. Nano Research, 2023, 16(7): 10559-10566. https://doi.org/10.1007/s12274-023-5662-6
Topics:

816

Views

4

Crossref

3

Web of Science

3

Scopus

0

CSCD

Altmetrics

Received: 07 December 2022
Revised: 09 March 2023
Accepted: 10 March 2023
Published: 06 May 2023
© Tsinghua University Press 2023
Return