AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

In-situ study for the elastic structure evolutions of three-dimensional Ir-O framework during the oxygen evolution reaction in acid

Jun Qi1Xinyu Zhong2,3Huiyan Zeng1Chao Wang1Zhongfei Liu1Jiajun Chen1Long Gu1Enna Hong1Mengxian Li1Jiong Li3,4( )Chunzhen Yang1( )
School of Materials, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China
Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204, China
University of Chinese Academy of Sciences, Beijing 100049, China
Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
Show Author Information

Graphical Abstract

By a series of in-situ characterizations including X-ray diffraction (XRD), X-ray absorption fine structure (XAFS), and Raman spectroscopy, we reveal the dynamic electrochemical processes and elastic structure evolutions of β-Li2IrO3 oxide catalyst during the oxygen evolution reaction in strong acid.

Abstract

Understanding the dynamic structural and chemical evolutions at the catalyst–electrolyte interfaces is crucial for the development of active and stable electrocatalysts. In this work, β-Li2IrO3 is employed as a model catalyst for the oxygen evolution reaction (OER). Its elastic three-dimensional Ir-O framework enables us to investigate the Li+ cation dissolution-induced structure evolutions and the formation mechanism of amorphous IrOx species. Electrochemical measurements by rotating ring disk electrode (RRDE) reveal that up to 60% of the measured OER current can be ascribed to catalyst degradation. A series of in-situ X-ray diffraction spectroscopy (XRD), X-ray absorption spectroscopy (XAS), and Raman spectroscopy are conducted. Structure vibration is observed with oxidation states of Ir being reduced abnormally during OER at high potentials. It’s hypothesized that the reversible proton intercalations are responsible for the Ir turn-over mechanism. Results of this work demonstrate a stable and elastic iridate structure and reveal the initial catalyst degradation behaviors during OER in acid media.

Electronic Supplementary Material

Download File(s)
12274_2023_5668_MOESM1_ESM.pdf (1.2 MB)

References

[1]

Nong, H. N.; Falling, L. J.; Bergmann, A.; Klingenhof, M.; Tran, H. P.; Spöri, C.; Mom, R.; Timoshenko, J.; Zichittella, G.; Knop-Gericke, A. et al. Key role of chemistry versus bias in electrocatalytic oxygen evolution. Nature 2020, 587, 408–413.

[2]

Naito, T.; Shinagawa, T.; Nishimoto, T.; Takanabe, K. Recent advances in understanding oxygen evolution reaction mechanisms over iridium oxide. Inorg. Chem. Front. 2021, 8, 2900–2917.

[3]

Chen, Y. B.; Li, H. Y.; Wang, J. X.; Du, Y. H.; Xi, S. B.; Sun, Y. M.; Sherburne, M.; Ager III, J. W.; Fisher, A. C.; Xu, Z. J. Exceptionally active iridium evolved from a pseudo-cubic perovskite for oxygen evolution in acid. Nat. Commun. 2019, 10, 572.

[4]

Reier, T.; Pawolek, Z.; Cherevko, S.; Bruns, M.; Jones, T.; Teschner, D.; Selve, S.; Bergmann, A.; Nong, H. N.; Schlögl, R. et al. Molecular insight in structure and activity of highly efficient, low-Ir Ir-Ni oxide catalysts for electrochemical water splitting (OER). J. Am. Chem. Soc. 2015, 137, 13031–13040.

[5]

She, L. N.; Zhao, G. Q.; Ma, T. Y.; Chen, J.; Sun, W. P.; Pan, H. G. On the durability of iridium-based electrocatalysts toward the oxygen evolution reaction under acid environment. Adv. Funct. Mater. 2022, 32, 2108465.

[6]

Zu, L. H.; Qian, X. Y.; Zhao, S. L.; Liang, Q. H.; Chen, Y. E.; Liu, M.; Su, B. J.; Wu, K. H.; Qu, L. B.; Duan, L. L. et al. Self-assembly of Ir-based nanosheets with ordered interlayer space for enhanced electrocatalytic water oxidation. J. Am. Chem. Soc. 2022, 144, 2208–2217.

[7]

Liang, X.; Shi, L.; Cao, R.; Wan, G.; Yan, W. S.; Chen, H.; Liu, Y. P.; Zou, X. X. Perovskite-type solid solution nano-electrocatalysts enable simultaneously enhanced activity and stability for oxygen evolution. Adv. Mater. 2020, 32, 2001430.

[8]

Sun, W.; Liu, J. Y.; Gong, X. Q.; Zaman, W. Q.; Cao, L. M.; Yang, J. OER activity manipulated by IrO6 coordination geometry: An insight from pyrochlore iridates. Sci. Rep. 2016, 6, 38429.

[9]

Shih, P. C.; Kim, J.; Sun, C. J.; Yang, H. Single-phase pyrochlore Y2Ir2O7 electrocatalyst on the activity of oxygen evolution reaction. ACS Appl. Energy Mater. 2018, 1, 3992–3998.

[10]

Ruiz Esquius, J.; Algara-Siller, G.; Spanos, I.; Freakley, S. J.; Schlögl, R.; Hutchings, G. J. Preparation of solid solution and layered IrOx-Ni(OH)2 oxygen evolution catalysts: Toward optimizing iridium efficiency for OER. ACS Catal. 2020, 10, 14640–14648.

[11]

Spöri, C.; Falling, L. J.; Kroschel, M.; Brand, C.; Bonakdarpour, A.; Kühl, S.; Berger, D.; Gliech, M.; Jones, T. E.; Wilkinson, D. P. et al. Molecular analysis of the unusual stability of an IrNbOx catalyst for the electrochemical water oxidation to molecular oxygen (OER). ACS Appl. Mater. Interfaces 2021, 13, 3748–3761.

[12]

Simondson, D.; Chatti, M.; Bonke, S. A.; Tesch, M. F.; Golnak, R.; Xiao, J.; Hoogeveen, D. A.; Cherepanov, P. V.; Gardiner, J. L.; Tricoli, A. et al. Stable acidic water oxidation with a cobalt-iron-lead oxide catalyst operating via a cobalt-selective self-healing mechanism. Angew. Chem., Int. Ed. 2021, 60, 15821–15826.

[13]

Song, C. W.; Suh, H.; Bak, J.; Bae, H. B.; Chung, S. Y. Dissolution-induced surface roughening and oxygen evolution electrocatalysis of alkaline-earth iridates in acid. Chem 2019, 5, 3243–3259.

[14]

Wan, G.; Freeland, J. W.; Kloppenburg, J.; Petretto, G.; Nelson, J. N.; Kuo, D. Y.; Sun, C. J.; Wen, J. G.; Diulus, J. T.; Herman, G. S. et al. Amorphization mechanism of SrIrO3 electrocatalyst: How oxygen redox initiates ionic diffusion and structural reorganization. Sci. Adv. 2021, 7, eabc7323.

[15]

Liu, X.; Meng, J. S.; Zhu, J. X.; Huang, M.; Wen, B.; Guo, R. T.; Mai, L. Q. Comprehensive understandings into complete reconstruction of precatalysts: Synthesis, applications, and characterizations. Adv. Mater. 2021, 33, 2007344.

[16]

Liu, X.; Guo, R. T.; Ni, K.; Xia, F. J.; Niu, C. J.; Wen, B.; Meng, J. S.; Wu, P. J.; Wu, J. S.; Wu, X. J. et al. Reconstruction-determined alkaline water electrolysis at industrial temperatures. Adv. Mater. 2020, 32, 2001136.

[17]

Liu, J. Z.; Guo, L. In situ self-reconstruction inducing amorphous species: A key to electrocatalysis. Matter 2021, 4, 2850–2873.

[18]

An, L.; Yang, F.; Fu, C. H.; Cai, X. Y.; Shen, S. Y.; Xia, G. F.; Li, J.; Du, Y. Z.; Luo, L. X.; Zhang, J. L. A functionally stable RuMn electrocatalyst for oxygen evolution reaction in acid. Adv. Funct. Mater. 2022, 32, 2200131.

[19]

Zhang, R. H.; Dubouis, N.; Ben Osman, M.; Yin, W.; Sougrati, M. T.; Corte, D. A. D.; Giaume, D.; Grimaud, A. A dissolution/precipitation equilibrium on the surface of iridium-based perovskites controls their activity as oxygen evolution reaction catalysts in acidic media. Angew. Chem., Int. Ed. 2019, 58, 4571–4575.

[20]

Long, C.; Han, J. Y.; Guo, J.; Yang, C. Y.; Liu, S. Q.; Tang, Z. Y. Operando toolbox for heterogeneous interface in electrocatalysis. Chem Catal. 2021, 1, 509–522.

[21]

Pearce, P. E.; Yang, C. Z.; Iadecola, A.; Rodriguez-Carvajal, J.; Rousse, G.; Dedryvère, R.; Abakumov, A. M.; Giaume, D.; Deschamps, M.; Tarascon, J. M. et al. Revealing the reactivity of the iridium trioxide intermediate for the oxygen evolution reaction in acidic media. Chem. Mater. 2019, 31, 5845–5855.

[22]

Filimonenkov, I. S.; Istomin, S. Y.; Antipov, E. V.; Tsirlina, G. A.; Savinova, E. R. Rotating ring-disk electrode as a quantitative tool for the investigation of the oxygen evolution reaction. Electrochim. Acta 2018, 286, 304–312.

[23]

Pearce, P. E.; Perez, A. J.; Rousse, G.; Saubanère, M.; Batuk, D.; Foix, D.; McCalla, E.; Abakumov, A. M.; Van Tendeloo, G.; Doublet, M. L. et al. Evidence for anionic redox activity in a tridimensional-ordered Li-rich positive electrode β-Li2IrO3. Nat. Mater. 2017, 16, 580–586.

[24]

Yang, C. Z.; Batuk, M.; Jacquet, Q.; Rousse, G.; Yin, W.; Zhang, L. T.; Hadermann, J.; Abakumov, A. M.; Cibin, G.; Chadwick, A. et al. Revealing pH-dependent activities and surface instabilities for Ni-based electrocatalysts during the oxygen evolution reaction. ACS Energy Lett. 2018, 3, 2884–2890.

[25]

Köhler, L.; Abrishami, M. E.; Roddatis, V.; Geppert, J.; Risch, M. Mechanistic parameters of electrocatalytic water oxidation on LiMn2O4 in comparison to natural photosynthesis. ChemSusChem 2017, 10, 4479–4490.

[26]

Minguzzi, A.; Lugaresi, O.; Achilli, E.; Locatelli, C.; Vertova, A.; Ghigna, P.; Rondinini, S. Observing the oxidation state turnover in heterogeneous iridium-based water oxidation catalysts. Chem. Sci. 2014, 5, 3591–3597.

[27]

Glamazda, A.; Lemmens, P.; Do, S. H.; Choi, Y. S.; Choi, K. Y. Raman spectroscopic signature of fractionalized excitations in the harmonic-honeycomb iridates β- and γ-Li2IrO3. Nat. Commun. 2016, 7, 12286.

[28]

Choi, S.; Kim, H. S.; Kim, H. H.; Krajewska, A.; Kim, G.; Minola, M.; Takayama, T.; Takagi, H.; Haule, K.; Vanderbilt, D. et al. Lattice dynamics and structural transition of the hyperhoneycomb iridate β-Li2IrO3 investigated by high-pressure Raman scattering. Phys. Rev. B 2020, 101, 054102.

[29]

Bribes, J. L.; El Boukari, M.; Maillols, J. Application of Raman spectroscopy to industrial membranes. Part 2—Perfluorosulphonic membrane. J. Raman Spectrosc. 1991, 22, 275–279.

[30]

El Boukari, M.; Bribes, J. L.; Maillols, J. Application of Raman spectroscopy to industrial membranes. Part 1—polyacrylic membranes. J. Raman Spectrosc. 1990, 21, 755–759.

[31]

Ethève, J.; Huguet, P.; Innocent, C.; Bribes, J. L.; Pourcelly, G. Electrochemical and Raman spectroscopy study of a nafion perfluorosulfonic membrane in organic solvent-water mixtures. J. Phys. Chem. B 2001, 105, 4151–4154.

[32]

Pavlovic, Z.; Ranjan, C.; Gao, Q.; van Gastel, M.; Schlögl, R. Probing the structure of a water-oxidizing anodic iridium oxide catalyst using Raman spectroscopy. ACS Catal. 2016, 6, 8098–8105.

[33]

Minguzzi, A.; Locatelli, C.; Lugaresi, O.; Achilli, E.; Cappelletti, G.; Scavini, M.; Coduri, M.; Masala, P.; Sacchi, B.; Vertova, A. et al. Easy accommodation of different oxidation states in iridium oxide nanoparticles with different hydration degree as water oxidation electrocatalysts. ACS Catal. 2015, 5, 5104–5115.

[34]

Tsai, H. M.; Babu, P. D.; Pao, C. W.; Chiou, J. W.; Jan, J. C.; Kumar, K. P. K.; Chien, F. Z.; Pong, W. F.; Tsai, M. H.; Chen, C. H. et al. Comparison of electronic structures of RuO2 and IrO2 nanorods investigated by X-ray absorption and scanning photoelectron microscopy. Appl. Phys. Lett. 2007, 90, 042108.

[35]

Mom, R. V.; Falling, L. J.; Kasian, O.; Algara-Siller, G.; Teschner, D.; Crabtree, R. H.; Knop-Gericke, A.; Mayrhofer, K. J. J.; Velasco-Vélez, J. J.; Jones, T. E. Operando structure–activity–stability relationship of iridium oxides during the oxygen evolution reaction. ACS Catal. 2022, 12, 5174–5184.

[36]

Song, C. W.; Lim, J.; Bae, H. B.; Chung, S. Y. Discovery of crystal structure–stability correlation in iridates for oxygen evolution electrocatalysis in acid. Energy Environ. Sci. 2020, 13, 4178–4188.

[37]

Bozal-Ginesta, C.; Rao, R. R.; Mesa, C. A.; Liu, X. Y.; Hillman, S. A. J.; Stephens, I. E. L.; Durrant, J. R. Redox-state kinetics in water-oxidation IrOx electrocatalysts measured by Operando spectroelectrochemistry. ACS Catal. 2021, 11, 15013–15025.

[38]

Yang, C. Z.; Rousse, G.; Louise Svane, K.; Pearce, P. E.; Abakumov, A. M.; Deschamps, M.; Cibin, G.; Chadwick, A. V.; Dalla Corte, D. A.; Anton Hansen, H. et al. Cation insertion to break the activity/stability relationship for highly active oxygen evolution reaction catalyst. Nat. Commun. 2020, 11, 1378.

Nano Research
Pages 9022-9030
Cite this article:
Qi J, Zhong X, Zeng H, et al. In-situ study for the elastic structure evolutions of three-dimensional Ir-O framework during the oxygen evolution reaction in acid. Nano Research, 2023, 16(7): 9022-9030. https://doi.org/10.1007/s12274-023-5668-0
Topics:

604

Views

5

Crossref

6

Web of Science

7

Scopus

0

CSCD

Altmetrics

Received: 09 February 2023
Revised: 10 March 2023
Accepted: 12 March 2023
Published: 29 April 2023
© Tsinghua University Press 2023
Return