Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
A multispectral camera records image data in various wavelengths across the electromagnetic spectrum to acquire additional information that a conventional camera fails to capture. With the advent of high-resolution image sensors and color filter technologies, multispectral imagers in the visible wavelengths have become popular with increasing commercial viability in the last decade. However, multispectral imaging in longwave infrared (LWIR, 8–14 µm) is still an emerging area due to the limited availability of optical materials, filter technologies, and high-resolution sensors. Images from LWIR multispectral cameras can capture emission spectra of objects to extract additional information that a human eye fails to capture and thus have important applications in precision agriculture, forestry, medicine, and object identification. In this work, we experimentally demonstrate an LWIR multispectral image sensor with three wavelength bands using optical elements made of an aluminum (Al)-based plasmonic filter array sandwiched in germanium (Ge). To realize the multispectral sensor, the filter arrays are then integrated into a three-dimensional (3D) printed wheel stacked on a low-resolution monochrome thermal sensor. Our prototype device is calibrated using a blackbody and its thermal output has been enhanced with computer vision methods. By applying a state-of-the-art deep learning method, we have also reconstructed multispectral images to a better spatial resolution. Scientifically, our work demonstrates a versatile spectral thermography technique for detecting target signatures in the LWIR range and other advanced spectral analyses.
Akula, A.; Ghosh, R.; Sardana, H. K. Thermal imaging and its application in defence systems. AIP Conf. Proc. 2011, 1391, 333–335.
Manolakis, D.; Steven, G.; DiPietro, R. S. Long-wave infrared hyperspectral remote sensing of chemical clouds: A focus on signal processing approaches. IEEE Signal Process. Mag. 2014, 31, 120–141.
Talghader, J. J.; Gawarikar, A. S.; Shea, R. P. Spectral selectivity in infrared thermal detection. Light:Sci. Appl. 2012, 1, e24.
Tran, C. D. Infrared multispectral imaging: Principles and instrumentation. Appl. Spectrosc. Rev. 2003, 38, 133–153.
Manolakis, D.; Pieper, M.; Truslow, E.; Lockwood, R.; Weisner, A.; Jacobson, J.; Cooley, T. Longwave infrared hyperspectral imaging: Principles, progress, and challenges. IEEE Geosci. Remote Sens. Mag. 2019, 7, 72–100.
Takagawa, Y.; Ogawa, S.; Kimata, M. Detection wavelength control of uncooled infrared sensors using two-dimensional lattice plasmonic absorbers. Sensors 2015, 15, 13660–13669.
Wang, A.; Dan, Y. P. Mid-infrared plasmonic multispectral filters. Sci. Rep. 2018, 8, 11257.
Meinzer, N.; Barnes, W. L.; Hooper, I. R. Plasmonic meta-atoms and metasurfaces. Nat. Photonics 2014, 8, 889–898.
Bouchon, P.; Pardo, F.; Portier, B.; Ferlazzo, L.; Ghenuche, P.; Dagher, G.; Dupuis, C.; Bardou, N.; Haïdar, R.; Pelouard, J. L. Total funneling of light in high aspect ratio plasmonic nanoresonators. Appl. Phys. Lett. 2011, 98, 191109.
Hao, J. M.; Wang, J.; Liu, X. L.; Padilla, W. J.; Zhou, L.; Qiu, M. High performance optical absorber based on a plasmonic metamaterial. Appl. Phys. Lett. 2010, 96, 251104.
Lapray, P. J.; Wang, X. B.; Thomas, J. B.; Gouton, P. Multispectral filter arrays: Recent advances and practical implementation. Sensors 2014, 14, 21626–21659.
He, X.; Liu, Y. J.; Ganesan, K.; Ahnood, A.; Beckett, P.; Eftekhari, F.; Smith, D.; Uddin, H.; Skafidas, E.; Nirmalathas, A. et al. A single sensor based multispectral imaging camera using a narrow spectral band color mosaic integrated on the monochrome CMOS image sensor. APL Photonics 2020, 5, 046104.
Monno, Y.; Kikuchi, S.; Tanaka, M.; Okutomi, M. A practical one-shot multispectral imaging system using a single image sensor. IEEE Trans. Image Process. 2015, 24, 3048–3059.
Burgos, S. P.; Yokogawa, S.; Atwater, H. A. Color imaging via nearest neighbor hole coupling in plasmonic color filters integrated onto a complementary metal-oxide semiconductor image sensor. ACS Nano 2013, 7, 10038–10047.
Goetz, S.; Bauch, M.; Dimopoulos, T.; Trassl, S. Ultrathin sputter-deposited plasmonic silver nanostructures. Nanoscale Adv. 2020, 2, 869–877.
Chong, X. Y.; Li, E. W.; Squire, K.; Wang, A. X. On-chip near-infrared spectroscopy of CO2 using high resolution plasmonic filter array. Appl. Phys. Lett. 2016, 108, 221106.
Jang, W. Y.; Ku, Z.; Jeon, J.; Kim, J. O.; Lee, S. J.; Park, J.; Noyola, M. J.; Urbas, A. Experimental demonstration of adaptive infrared multispectral imaging using plasmonic filter array. Sci. Rep. 2016, 6, 34876.
Park, H.; Crozier, K. B. Multispectral imaging with vertical silicon nanowires. Sci. Rep. 2013, 3, 2460.
Gérard, D.; Gray, S. K. Aluminium plasmonics. J. Phys. D:Appl. Phys. 2015, 48, 184001.
Vetter, K. Recent developments in the fabrication and operation of germanium detectors. Annu. Rev. Nucl. Part. Sci. 2007, 57, 363–404.
Stanley, R. Plasmonics in the mid-infrared. Nat. Photonics 2012, 6, 409–411.
Mirnaziry, S. R.; Setayesh, A.; Abrishamian, M. S. Design and analysis of plasmonic filters based on stubs. J. Opt. Soc. Am. B 2011, 28, 1300–1307.
Shoji, T.; Tsuboi, Y. Plasmonic optical tweezers toward molecular manipulation: Tailoring plasmonic nanostructure, light source, and resonant trapping. J. Phys. Chem. Lett. 2014, 5, 2957–2967.
Ogawa, S.; Kimata, M. Wavelength- or polarization-selective thermal infrared detectors for multi-color or polarimetric imaging using plasmonics and metamaterials. Materials 2017, 10, 493.
Tsakmakidis, K. L.; Boyd, R. W.; Yablonovitch, E.; Zhang, X. Large spontaneous-emission enhancements in metallic nanostructures: Towards LEDs faster than lasers. Opt. Express 2016, 24, 17916–17927.
Yu, J. Y.; Ohtera, Y.; Yamada, H. Scattering-parameter model analysis of side-coupled plasmonic Fabry–Perot waveguide filters. Appl. Phys. A 2018, 124, 516.
Unnithan, R. R.; Sun, M.; He, X.; Balaur, E.; Minovich, A.; Neshev, D. N.; Skafidas, E.; Roberts, A. Plasmonic colour filters based on coaxial holes in aluminium. Materials 2017, 10, 383.
Tittl, A.; Michel, A. K. U.; Schäferling, M.; Yin, X. H.; Gholipour, B.; Cui, L.; Wuttig, M.; Taubner, T.; Neubrech, F.; Giessen, H. A switchable mid-infrared plasmonic perfect absorber with multispectral thermal imaging capability. Adv. Mater. 2015, 27, 4597–4603.
Lee, S. J.; Ku, Z.; Barve, A.; Montoya, J.; Jang, W. Y.; Brueck, S. R. J.; Sundaram, M.; Reisinger, A.; Krishna, S.; Noh, S. K. A monolithically integrated plasmonic infrared quantum dot camera. Nat. Commun. 2011, 2, 286.
Dao, T. D.; Ishii, S.; Yokoyama, T.; Sawada, T.; Sugavaneshwar, R. P.; Chen, K.; Wada, Y.; Nabatame, T.; Nagao, T. Hole array perfect absorbers for spectrally selective midwavelength infrared pyroelectric detectors. ACS Photonics 2016, 3, 1271–1278.
Dai, Q.; Rajasekharan, R.; Butt, H.; Qiu, X. H.; Amaragtunga, G.; Wilkinson, T. D. Ultrasmall microlens array based on vertically aligned carbon nanofibers. Small 2012, 8, 2501–2504.
Mittal, A.; Soundararajan, R.; Bovik, A. C. Making a “completely blind” image quality analyzer. IEEE Signal Process. Lett. 2013, 20, 209–212.
1364
Views
118
Downloads
3
Crossref
4
Web of Science
5
Scopus
0
CSCD
Altmetrics
Copyright: © 2023 by the author(s). This article is an open access article distributed under Creative Commons Attribution License (CC BY 4.0), visit https://creativecommons.org/licenses/by/4.0/.