AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Acetic acid-mediated rapid cubic-to-hexagonal (α–β) phase transformation for ultra-bright lanthanide-doped β-NaYF4 nano-bioprobes

Shihui Jiang1,2Jianxi Ke2,3( )Guowei Li2Aijun Liu2Xiaohan Li2Lixiang Ye2Feilong Jiang2Yongsheng Liu2,3,4,5( )Maochun Hong2,3,4,5( )
Fujian Normal University, Fuzhou 350007, China
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
China Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, China
Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516000, China
The First Affiliated Hospital of Xiamen University, Xiamen 361005, China
Show Author Information

Graphical Abstract

An acetic acid-mediated rapid cubic-to-hexagonal (α–β) phase transformation strategy is first developed to prepare ultra-bright β-NaYF4:Yb,Er nano-bioprobes at an ultra-low synthesis temperature down to 200 °C.

Abstract

Hexagonal-phase NaYF4 (β-NaYF4) has been acknowledged to be one of the most efficient doping hosts to prepare bright lanthanide-doped luminescent nano-bioprobes for various biomedical applications. However, to date, it remains a great challenge to synthesize ultra-bright lanthanide-doped β-NaYF4 nano-bioprobes under a low reaction temperature by using conventional synthetic methods. Herein, we first develop an acetic acid (HAc)-mediated coprecipitation method for the preparation of ultra-bright lanthanide-doped β-NaYF4 nanoprobes under a low reaction temperature at 200 °C. Based on a series of comparative spectroscopic investigations, we show that the use of HAc in the reaction environment can not only promote the rapid α–β phase transformation of NaYF4 host at 200 °C within 1 h but also boost the absolute photoluminescence quantum yield (PLQY) of NaYF4 nanocrystals to 30.68% for near-infrared emission and to 3.79% for upconversion luminescence, both of which are amongst the highest values for diverse lanthanide-doped luminescent nanocrystals ever reported. By virtue of their superior near-infrared luminescence, we achieve optical-guided dynamic vasculature imaging in vivo of the whole body at a high spatial resolution (23.8 µm) under 980 nm excitation, indicating its potential for the diagnosis and treatment evaluation of vasculature-related diseases.

Electronic Supplementary Material

Download File(s)
12274_2023_5671_MOESM1_ESM.pdf (2.7 MB)

References

[1]

Ma, Q. Q.; Wang, J.; Li, Z. H.; Lv, X. B.; Liang, L.; Yuan, Q. Recent progress in time-resolved biosensing and bioimaging based on lanthanide-doped nanoparticles. Small 2019, 15, 1804969.

[2]

Zhou, J. J.; Del Rosal, B.; Jaque, D.; Uchiyama, S.; Jin, D. Y. Advances and challenges for fluorescence nanothermometry. Nat. Methods 2020, 17, 967–980.

[3]

Sun, G. T.; Xie, Y.; Sun, L. N.; Zhang, H. J. Lanthanide upconversion and downshifting luminescence for biomolecules detection. Nanoscale Horiz. 2021, 6, 766–780.

[4]

Li, C. Y.; Chen, G. C.; Zhang, Y. J.; Wu, F.; Wang, Q. B. Advanced fluorescence imaging technology in the near-infrared-ii window for biomedical applications. J. Am. Chem. Soc. 2020, 142, 14789–14804.

[5]

Xu, C.; Pu, K. Y. Second near-infrared photothermal materials for combinational nanotheranostics. Chem. Soc. Rev. 2021, 50, 1111–1137.

[6]

Lei, Z. H.; Zhang, F. Molecular engineering of NIR-II fluorophores for improved biomedical detection. Angew. Chem., Int. Ed. 2021, 60, 16294–16308.

[7]

Zhang, H. X.; Chen, Z. H.; Liu, X.; Zhang, F. A mini-review on recent progress of new sensitizers for luminescence of lanthanide doped nanomaterials. Nano Res. 2020, 13, 1795–1809.

[8]

Li, H.; Wang, X.; Ohulchanskyy, T. Y.; Chen, G. Y. Lanthanide-doped near-infrared nanoparticles for biophotonics. Adv. Mater. 2021, 33, 2000678.

[9]

Yi, Z. G.; Luo, Z. C.; Qin, X.; Chen, Q. S.; Liu, X. G. Lanthanide-activated nanoparticles: A toolbox for bioimaging, therapeutics, and neuromodulation. Acc. Chem. Res. 2020, 53, 2692–2704.

[10]

Zhong, Y. T.; Dai, H. J. A mini-review on rare-earth down-conversion nanoparticles for NIR-II imaging of biological systems. Nano Res. 2020, 13, 1281–1294.

[11]

Nexha, A.; Carvajal, J. J.; Pujol, M. C.; Díaz, F.; Aguiló, M. Lanthanide doped luminescence nanothermometers in the biological windows: Strategies and applications. Nanoscale 2021, 13, 7913–7987.

[12]

Jia, M. C.; Chen, X.; Sun, R. R.; Wu, D.; Li, X. J.; Shi, Z. F.; Chen, G. Y.; Shan, C. X. Lanthanide-based ratiometric luminescence nanothermometry. Nano Res. 2022, 16, 2949–2967.

[13]

Yu, C. C.; Li, K.; Xu, L.; Li, B.; Li, C. H.; Guo, S.; Li, Z. Y.; Zhang, Y. Q.; Hussain, A.; Tan, H. et al. siRNA-functionalized lanthanide nanoparticle enables efficient endosomal escape and cancer treatment. Nano Res. 2022, 15, 9160–9168.

[14]

Xu, J. T.; Zhou, J. J.; Chen, Y. H.; Yang, P. P.; Lin, J. Lanthanide-activated nanoconstructs for optical multiplexing. Coord. Chem. Rev. 2020, 415, 213328.

[15]

Zheng, X.; Kankala, R. K.; Liu, C. G.; Wang, S. B.; Chen, A. Z.; Zhang, Y. Lanthanides-doped near-infrared active upconversion nanocrystals: Upconversion mechanisms and synthesis. Coord. Chem. Rev. 2021, 438, 213870.

[16]

Liu, S. B.; Yan, L.; Huang, J. S.; Zhang, Q. Y.; Zhou, B. Controlling upconversion in emerging multilayer core-shell nanostructures: From fundamentals to frontier applications. Chem. Soc. Rev. 2022, 51, 1729–1765.

[17]

Runowski, M.; Stopikowska, N.; Szeremeta, D.; Goderski, S.; Skwierczyńska, M.; Lis, S. Upconverting lanthanide fluoride core@shell nanorods for luminescent thermometry in the first and second biological windows: β-NaYF4:Yb3+-Er3+@SiO2 temperature sensor. ACS Appl. Mater. Interfaces 2019, 11, 13389–13396.

[18]

Chen, B.; Wang, F. Recent advances in the synthesis and application of Yb-based fluoride upconversion nanoparticles. Inorg. Chem. Front. 2020, 7, 1067–1081.

[19]

Zheng, B. Z.; Fan, J. Y.; Chen, B.; Qin, X.; Wang, J.; Wang, F.; Deng, R. R.; Liu, X. G. Rare-earth doping in nanostructured inorganic materials. Chem. Rev. 2022, 122, 5519–5603.

[20]

Loo, J. F. C.; Chien, Y. H.; Yin, F.; Kong, S. K.; Ho, H. P.; Yong, K. T. Upconversion and downconversion nanoparticles for biophotonics and nanomedicine. Coord. Chem. Rev. 2019, 400, 213042.

[21]

Mohanty, S.; Kaczmarek, A. M. Unravelling the benefits of transition-metal-co-doping in lanthanide upconversion nanoparticles. Chem. Soc. Rev. 2022, 51, 6893–6908.

[22]

Luo, W.; Xu, F.; Li, A. H.; Sun, Z. J. Resonant control and enhancement of upconversion luminescence of NaYF4:Yb,Er nanoparticles on metal gratings. Adv. Opt. Mater. 2022, 10, 2102668.

[23]

Zhang, F.; Li, J.; Shan, J.; Xu, L.; Zhao, D. Y. Shape, size, and phase-controlled rare-earth fluoride nanocrystals with optical up-conversion properties. Chem. —Eur. J. 2009, 15, 11010–11019.

[24]

Zhang, C.; Sun, L. D.; Zhang, Y. W.; Yan, C. H. Rare earth upconversion nanophosphors: Synthesis, functionalization and application as biolabels and energy transfer donors. J. Rare Earths 2010, 28, 807–819.

[25]

Cao, T. Y.; Yang, Y.; Gao, Y. A.; Zhou, J.; Li, Z. Q.; Li, F. Y. High-quality water-soluble and surface-functionalized upconversion nanocrystals as luminescent probes for bioimaging. Biomaterials 2011, 32, 2959–2968.

[26]

Wang, G. F.; Peng, Q.; Li, Y. D. Lanthanide-doped nanocrystals: Synthesis, optical-magnetic properties, and applications. Acc. Chem. Res. 2011, 44, 322–332.

[27]

Chang, H. J.; Xie, J.; Zhao, B. Z.; Liu, B. T.; Xu, S. L.; Ren, N.; Xie, X. J.; Huang, L.; Huang, W. Rare earth ion-doped upconversion nanocrystals: Synthesis and surface modification. Nanomaterials 2015, 5, 1–25.

[28]

Li, Y. B.; Li, X. L.; Xue, Z. L.; Jiang, M. Y.; Zeng, S. J.; Hao, J. H. M2+ doping induced simultaneous phase/size control and remarkable enhanced upconversion luminescence of NaLnF4 probes for optical-guided tiny tumor diagnosis. Adv. Healthc. Mater. 2017, 6, 1601231.

[29]

Sun, Y. J.; Chen, Y.; Tian, L. J.; Yu, Y.; Kong, X. G.; Zhao, J. W.; Zhang, H. Controlled synthesis and morphology dependent upconversion luminescence of NaYF4:Yb,Er nanocrystals. Nanotechnology 2007, 18, 275609.

[30]

Tian, Q.; Tao, K.; Li, W. W.; Sun, K. Hot-injection approach for two-stage formed hexagonal NaYF4:Yb,Er nanocrystals. J. Phys. Chem. C 2011, 115, 22886–22892.

[31]

Niu, N.; He, F.; Gai, S. L.; Li, C. X.; Zhang, X.; Huang, S. H.; Yang, P. P. Rapid microwave reflux process for the synthesis of pure hexagonal NaYF4: Yb3+, Ln3+, Bi3+ (Ln3+ = Er3+, Tm3+, Ho3+) and its enhanced UC luminescence. J. Mater. Chem. 2012, 22, 21613–21623.

[32]

Sui, Y. Q.; Tao, K.; Tian, Q.; Sun, K. Interaction between Y3+ and oleate ions for the cubic-to-hexagonal phase transformation of NaYF4 nanocrystals. J. Phys. Chem. C 2012, 116, 1732–1739.

[33]

Chen, Y. S.; He, W.; Wang, H. H.; Hao, X. L.; Jiao, Y. C.; Lu, J. X.; Yang, S. E. Effects of the reaction time and size on the up conversion luminescence of NaYF4:Yb(20%),Er(1%) microcrystals. J. Lumin. 2012, 132, 2404–2408.

[34]

Wang, Z.; Feng, J.; Pang, M.; Pan, S. H.; Zhang, H. J. Multicolor and bright white upconversion luminescence from rice-shaped lanthanide doped BiPO4 submicron particles. Dalton Trans. 2013, 42, 12101–12108.

[35]

Lin, H.; Xu, D. K.; Li, A. M.; Teng, D. D.; Yang, S. H.; Zhang, Y. L. Tuning of structure and enhancement of upconversion luminescence in NaLuF4:Yb3+,Ho3+ crystals. Phys. Chem. Chem. Phys. 2015, 17, 19515–19526.

[36]

Zhu, Y. S.; Xu, W.; Cui, S. B.; Liu, M.; Lu, C.; Song, H. W.; Kim, D. H. Correction: Controlled size and morphology, and phase transition of YF3:Yb3+,Er3+ and YOF:Yb3+,Er3+ nanocrystals for fine color tuning. J. Mater. Chem. C 2016, 4, 638.

[37]

Zhai, X. S.; Chen, X. L.; Wang, S. Q.; Sun, W.; Du, J. Z.; Zhang, C. C.; Ren, T. Y.; Zhang, Q. F.; Feng, J. Synthesis of small-sized hexagonal NaREF4 (RE = Yb, Lu) nanocrystals through accelerating phase transformation. J. Lumin. 2022, 244, 118694.

[38]

Wang, F.; Han, Y.; Lim, C. S.; Lu, Y. H.; Wang, J.; Xu, J.; Chen, H. Y.; Zhang, C.; Hong, M. H.; Liu, X. G. Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping. Nature 2010, 463, 1061–1065.

[39]

Janjua, R. A.; Gao, C.; Dai, R. C.; Sui, Z. L.; Raja, M. A. A.; Wang, Z. P.; Zhen, X. X.; Zhang, Z. M. Na+-driven nucleation of NaYF4:Yb,Er nanocrystals and effect of temperature on their structural transformations and luminescent properties. J. Phys. Chem. C 2018, 122, 23242–23250.

[40]

Wang, X.; Zhang, P.; Wang, L. L.; Lan, M.; Yang, Y. Z.; Yang, C. Phase evolution and upconversion luminescence enhancement investigation from YF3 to (α+β)-NaYF4 by doping of Cu2+ ion. Mater. Lett. 2018, 218, 80–82.

[41]

Saha, S.; Pala, R. G. S.; Sivakumar, S. Catalyzing cubic-to-hexagonal phase transition in NaYF4 via ligand enhanced surface ordering. Cryst. Growth Des. 2018, 18, 5080–5088.

[42]

Yang, D. D.; Pan, Q. W.; Kang, S. L.; Dong, G. P.; Qiu, J. R. Weakening thermal quenching to enhance luminescence of Er3+ doped β-NaYF4 nanocrystals via acid-treatment. J. Am. Ceram. Soc. 2019, 102, 6027–6037.

[43]

Wu, S. L.; Liu, Y.; Chang, J.; Ning, Y. H.; Zhang, S. F. β-NaYF4:Yb3+,Er3+ upconversion microcrystals with both high emission intensity and controlled morphology. Laser Photon. Rev. 2014, 8, 575–582.

[44]

Feng, Y.; Shao, B. Q.; Song, Y.; Zhao, S.; Huo, J. S.; Lu, W.; You, H. P. Fast synthesis of β-NaYF4:Ln3+ (Ln = Yb/Er, Yb/Tm) upconversion nanocrystals via a topotactic transformation route. Crystengcomm 2016, 18, 7601–7606.

[45]

Yan, J.; Yao, H. H.; Li, J. H.; He, S. M.; Wu, Q. L.; Yang, X. F.; Khan, W. U.; Shi, J. X.; Wu, M. M. Hexagonal β-Na(Y,Yb)F4 based core/shell nanorods: Epitaxial growth, enhanced and tailored up-conversion emission. RSC Adv. 2017, 7, 19205–19210.

[46]

Liang, X.; Wang, X.; Zhuang, J.; Peng, Q.; Li, Y. Synthesis of NaYF4 nanocrystals with predictable phase and shape. Adv. Funct. Mater. 2007, 17, 2757–2765.

[47]

Wu, W.; Yang, Y. Q.; Yang, Y.; Yang, Y. M.; Zhang, K. Y.; Guo, L.; Ge, H. F.; Chen, X. W.; Liu, J.; Feng, H. Molecular engineering of an organic NIR-II fluorophore with aggregation-induced emission characteristics for in vivo imaging. Small 2019, 15, 1805549.

[48]

Li, Z. H.; Ding, X.; Cong, H. L.; Wang, S.; Yu, B.; Shen, Y. Q. Recent advances on inorganic lanthanide-doped NIR-II fluorescence nanoprobes for bioapplication. J. Lumin. 2020, 228, 117627.

[49]

Meng, X. D.; Pang, X. J.; Zhang, K.; Gong, C. C.; Yang, J. Y.; Dong, H. F.; Zhang, X. J. Recent advances in near-infrared-II fluorescence imaging for deep-tissue molecular analysis and cancer diagnosis. Small 2022, 18, 2202035.

[50]

Fan, Y.; Zhang, F. A new generation of NIR-II probes: Lanthanide-based nanocrystals for bioimaging and biosensing. Adv. Opt. Mater. 2019, 7, 1801417.

[51]

Zou, Q. L.; Marcelot, C.; Ratel-Ramond, N.; Yi, X. D.; Roblin, P.; Frenzel, F.; Resch-Genger, U.; Eftekhari, A.; Bouchet, A.; Coudret, C. et al. Heterogeneous oxysulfide@fluoride core/shell nanocrystals for upconversion-based nanothermometry. ACS Nano 2022, 16, 12107–12117.

[52]

Wei, Z.; Liu, Y. W.; Li, B.; Li, J. J.; Lu, S.; Xing, X. W.; Liu, K.; Wang, F.; Zhang, H. J. Correction: Rare-earth based materials: An effective toolbox for brain imaging, therapy, monitoring and neuromodulation. Light Sci. Appl. 2022, 11, 224.

Nano Research
Pages 10026-10033
Cite this article:
Jiang S, Ke J, Li G, et al. Acetic acid-mediated rapid cubic-to-hexagonal (α–β) phase transformation for ultra-bright lanthanide-doped β-NaYF4 nano-bioprobes. Nano Research, 2023, 16(7): 10026-10033. https://doi.org/10.1007/s12274-023-5671-5
Topics:

936

Views

2

Crossref

1

Web of Science

2

Scopus

0

CSCD

Altmetrics

Received: 08 January 2023
Revised: 24 February 2023
Accepted: 10 March 2023
Published: 06 May 2023
© Tsinghua University Press 2023
Return