Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Hexagonal-phase NaYF4 (β-NaYF4) has been acknowledged to be one of the most efficient doping hosts to prepare bright lanthanide-doped luminescent nano-bioprobes for various biomedical applications. However, to date, it remains a great challenge to synthesize ultra-bright lanthanide-doped β-NaYF4 nano-bioprobes under a low reaction temperature by using conventional synthetic methods. Herein, we first develop an acetic acid (HAc)-mediated coprecipitation method for the preparation of ultra-bright lanthanide-doped β-NaYF4 nanoprobes under a low reaction temperature at 200 °C. Based on a series of comparative spectroscopic investigations, we show that the use of HAc in the reaction environment can not only promote the rapid α–β phase transformation of NaYF4 host at 200 °C within 1 h but also boost the absolute photoluminescence quantum yield (PLQY) of NaYF4 nanocrystals to 30.68% for near-infrared emission and to 3.79% for upconversion luminescence, both of which are amongst the highest values for diverse lanthanide-doped luminescent nanocrystals ever reported. By virtue of their superior near-infrared luminescence, we achieve optical-guided dynamic vasculature imaging in vivo of the whole body at a high spatial resolution (23.8 µm) under 980 nm excitation, indicating its potential for the diagnosis and treatment evaluation of vasculature-related diseases.
Ma, Q. Q.; Wang, J.; Li, Z. H.; Lv, X. B.; Liang, L.; Yuan, Q. Recent progress in time-resolved biosensing and bioimaging based on lanthanide-doped nanoparticles. Small 2019, 15, 1804969.
Zhou, J. J.; Del Rosal, B.; Jaque, D.; Uchiyama, S.; Jin, D. Y. Advances and challenges for fluorescence nanothermometry. Nat. Methods 2020, 17, 967–980.
Sun, G. T.; Xie, Y.; Sun, L. N.; Zhang, H. J. Lanthanide upconversion and downshifting luminescence for biomolecules detection. Nanoscale Horiz. 2021, 6, 766–780.
Li, C. Y.; Chen, G. C.; Zhang, Y. J.; Wu, F.; Wang, Q. B. Advanced fluorescence imaging technology in the near-infrared-ii window for biomedical applications. J. Am. Chem. Soc. 2020, 142, 14789–14804.
Xu, C.; Pu, K. Y. Second near-infrared photothermal materials for combinational nanotheranostics. Chem. Soc. Rev. 2021, 50, 1111–1137.
Lei, Z. H.; Zhang, F. Molecular engineering of NIR-II fluorophores for improved biomedical detection. Angew. Chem., Int. Ed. 2021, 60, 16294–16308.
Zhang, H. X.; Chen, Z. H.; Liu, X.; Zhang, F. A mini-review on recent progress of new sensitizers for luminescence of lanthanide doped nanomaterials. Nano Res. 2020, 13, 1795–1809.
Li, H.; Wang, X.; Ohulchanskyy, T. Y.; Chen, G. Y. Lanthanide-doped near-infrared nanoparticles for biophotonics. Adv. Mater. 2021, 33, 2000678.
Yi, Z. G.; Luo, Z. C.; Qin, X.; Chen, Q. S.; Liu, X. G. Lanthanide-activated nanoparticles: A toolbox for bioimaging, therapeutics, and neuromodulation. Acc. Chem. Res. 2020, 53, 2692–2704.
Zhong, Y. T.; Dai, H. J. A mini-review on rare-earth down-conversion nanoparticles for NIR-II imaging of biological systems. Nano Res. 2020, 13, 1281–1294.
Nexha, A.; Carvajal, J. J.; Pujol, M. C.; Díaz, F.; Aguiló, M. Lanthanide doped luminescence nanothermometers in the biological windows: Strategies and applications. Nanoscale 2021, 13, 7913–7987.
Jia, M. C.; Chen, X.; Sun, R. R.; Wu, D.; Li, X. J.; Shi, Z. F.; Chen, G. Y.; Shan, C. X. Lanthanide-based ratiometric luminescence nanothermometry. Nano Res. 2022, 16, 2949–2967.
Yu, C. C.; Li, K.; Xu, L.; Li, B.; Li, C. H.; Guo, S.; Li, Z. Y.; Zhang, Y. Q.; Hussain, A.; Tan, H. et al. siRNA-functionalized lanthanide nanoparticle enables efficient endosomal escape and cancer treatment. Nano Res. 2022, 15, 9160–9168.
Xu, J. T.; Zhou, J. J.; Chen, Y. H.; Yang, P. P.; Lin, J. Lanthanide-activated nanoconstructs for optical multiplexing. Coord. Chem. Rev. 2020, 415, 213328.
Zheng, X.; Kankala, R. K.; Liu, C. G.; Wang, S. B.; Chen, A. Z.; Zhang, Y. Lanthanides-doped near-infrared active upconversion nanocrystals: Upconversion mechanisms and synthesis. Coord. Chem. Rev. 2021, 438, 213870.
Liu, S. B.; Yan, L.; Huang, J. S.; Zhang, Q. Y.; Zhou, B. Controlling upconversion in emerging multilayer core-shell nanostructures: From fundamentals to frontier applications. Chem. Soc. Rev. 2022, 51, 1729–1765.
Runowski, M.; Stopikowska, N.; Szeremeta, D.; Goderski, S.; Skwierczyńska, M.; Lis, S. Upconverting lanthanide fluoride core@shell nanorods for luminescent thermometry in the first and second biological windows: β-NaYF4:Yb3+-Er3+@SiO2 temperature sensor. ACS Appl. Mater. Interfaces 2019, 11, 13389–13396.
Chen, B.; Wang, F. Recent advances in the synthesis and application of Yb-based fluoride upconversion nanoparticles. Inorg. Chem. Front. 2020, 7, 1067–1081.
Zheng, B. Z.; Fan, J. Y.; Chen, B.; Qin, X.; Wang, J.; Wang, F.; Deng, R. R.; Liu, X. G. Rare-earth doping in nanostructured inorganic materials. Chem. Rev. 2022, 122, 5519–5603.
Loo, J. F. C.; Chien, Y. H.; Yin, F.; Kong, S. K.; Ho, H. P.; Yong, K. T. Upconversion and downconversion nanoparticles for biophotonics and nanomedicine. Coord. Chem. Rev. 2019, 400, 213042.
Mohanty, S.; Kaczmarek, A. M. Unravelling the benefits of transition-metal-co-doping in lanthanide upconversion nanoparticles. Chem. Soc. Rev. 2022, 51, 6893–6908.
Luo, W.; Xu, F.; Li, A. H.; Sun, Z. J. Resonant control and enhancement of upconversion luminescence of NaYF4:Yb,Er nanoparticles on metal gratings. Adv. Opt. Mater. 2022, 10, 2102668.
Zhang, F.; Li, J.; Shan, J.; Xu, L.; Zhao, D. Y. Shape, size, and phase-controlled rare-earth fluoride nanocrystals with optical up-conversion properties. Chem. —Eur. J. 2009, 15, 11010–11019.
Zhang, C.; Sun, L. D.; Zhang, Y. W.; Yan, C. H. Rare earth upconversion nanophosphors: Synthesis, functionalization and application as biolabels and energy transfer donors. J. Rare Earths 2010, 28, 807–819.
Cao, T. Y.; Yang, Y.; Gao, Y. A.; Zhou, J.; Li, Z. Q.; Li, F. Y. High-quality water-soluble and surface-functionalized upconversion nanocrystals as luminescent probes for bioimaging. Biomaterials 2011, 32, 2959–2968.
Wang, G. F.; Peng, Q.; Li, Y. D. Lanthanide-doped nanocrystals: Synthesis, optical-magnetic properties, and applications. Acc. Chem. Res. 2011, 44, 322–332.
Chang, H. J.; Xie, J.; Zhao, B. Z.; Liu, B. T.; Xu, S. L.; Ren, N.; Xie, X. J.; Huang, L.; Huang, W. Rare earth ion-doped upconversion nanocrystals: Synthesis and surface modification. Nanomaterials 2015, 5, 1–25.
Li, Y. B.; Li, X. L.; Xue, Z. L.; Jiang, M. Y.; Zeng, S. J.; Hao, J. H. M2+ doping induced simultaneous phase/size control and remarkable enhanced upconversion luminescence of NaLnF4 probes for optical-guided tiny tumor diagnosis. Adv. Healthc. Mater. 2017, 6, 1601231.
Sun, Y. J.; Chen, Y.; Tian, L. J.; Yu, Y.; Kong, X. G.; Zhao, J. W.; Zhang, H. Controlled synthesis and morphology dependent upconversion luminescence of NaYF4:Yb,Er nanocrystals. Nanotechnology 2007, 18, 275609.
Tian, Q.; Tao, K.; Li, W. W.; Sun, K. Hot-injection approach for two-stage formed hexagonal NaYF4:Yb,Er nanocrystals. J. Phys. Chem. C 2011, 115, 22886–22892.
Niu, N.; He, F.; Gai, S. L.; Li, C. X.; Zhang, X.; Huang, S. H.; Yang, P. P. Rapid microwave reflux process for the synthesis of pure hexagonal NaYF4: Yb3+, Ln3+, Bi3+ (Ln3+ = Er3+, Tm3+, Ho3+) and its enhanced UC luminescence. J. Mater. Chem. 2012, 22, 21613–21623.
Sui, Y. Q.; Tao, K.; Tian, Q.; Sun, K. Interaction between Y3+ and oleate ions for the cubic-to-hexagonal phase transformation of NaYF4 nanocrystals. J. Phys. Chem. C 2012, 116, 1732–1739.
Chen, Y. S.; He, W.; Wang, H. H.; Hao, X. L.; Jiao, Y. C.; Lu, J. X.; Yang, S. E. Effects of the reaction time and size on the up conversion luminescence of NaYF4:Yb(20%),Er(1%) microcrystals. J. Lumin. 2012, 132, 2404–2408.
Wang, Z.; Feng, J.; Pang, M.; Pan, S. H.; Zhang, H. J. Multicolor and bright white upconversion luminescence from rice-shaped lanthanide doped BiPO4 submicron particles. Dalton Trans. 2013, 42, 12101–12108.
Lin, H.; Xu, D. K.; Li, A. M.; Teng, D. D.; Yang, S. H.; Zhang, Y. L. Tuning of structure and enhancement of upconversion luminescence in NaLuF4:Yb3+,Ho3+ crystals. Phys. Chem. Chem. Phys. 2015, 17, 19515–19526.
Zhu, Y. S.; Xu, W.; Cui, S. B.; Liu, M.; Lu, C.; Song, H. W.; Kim, D. H. Correction: Controlled size and morphology, and phase transition of YF3:Yb3+,Er3+ and YOF:Yb3+,Er3+ nanocrystals for fine color tuning. J. Mater. Chem. C 2016, 4, 638.
Zhai, X. S.; Chen, X. L.; Wang, S. Q.; Sun, W.; Du, J. Z.; Zhang, C. C.; Ren, T. Y.; Zhang, Q. F.; Feng, J. Synthesis of small-sized hexagonal NaREF4 (RE = Yb, Lu) nanocrystals through accelerating phase transformation. J. Lumin. 2022, 244, 118694.
Wang, F.; Han, Y.; Lim, C. S.; Lu, Y. H.; Wang, J.; Xu, J.; Chen, H. Y.; Zhang, C.; Hong, M. H.; Liu, X. G. Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping. Nature 2010, 463, 1061–1065.
Janjua, R. A.; Gao, C.; Dai, R. C.; Sui, Z. L.; Raja, M. A. A.; Wang, Z. P.; Zhen, X. X.; Zhang, Z. M. Na+-driven nucleation of NaYF4:Yb,Er nanocrystals and effect of temperature on their structural transformations and luminescent properties. J. Phys. Chem. C 2018, 122, 23242–23250.
Wang, X.; Zhang, P.; Wang, L. L.; Lan, M.; Yang, Y. Z.; Yang, C. Phase evolution and upconversion luminescence enhancement investigation from YF3 to (α+β)-NaYF4 by doping of Cu2+ ion. Mater. Lett. 2018, 218, 80–82.
Saha, S.; Pala, R. G. S.; Sivakumar, S. Catalyzing cubic-to-hexagonal phase transition in NaYF4 via ligand enhanced surface ordering. Cryst. Growth Des. 2018, 18, 5080–5088.
Yang, D. D.; Pan, Q. W.; Kang, S. L.; Dong, G. P.; Qiu, J. R. Weakening thermal quenching to enhance luminescence of Er3+ doped β-NaYF4 nanocrystals via acid-treatment. J. Am. Ceram. Soc. 2019, 102, 6027–6037.
Wu, S. L.; Liu, Y.; Chang, J.; Ning, Y. H.; Zhang, S. F. β-NaYF4:Yb3+,Er3+ upconversion microcrystals with both high emission intensity and controlled morphology. Laser Photon. Rev. 2014, 8, 575–582.
Feng, Y.; Shao, B. Q.; Song, Y.; Zhao, S.; Huo, J. S.; Lu, W.; You, H. P. Fast synthesis of β-NaYF4:Ln3+ (Ln = Yb/Er, Yb/Tm) upconversion nanocrystals via a topotactic transformation route. Crystengcomm 2016, 18, 7601–7606.
Yan, J.; Yao, H. H.; Li, J. H.; He, S. M.; Wu, Q. L.; Yang, X. F.; Khan, W. U.; Shi, J. X.; Wu, M. M. Hexagonal β-Na(Y,Yb)F4 based core/shell nanorods: Epitaxial growth, enhanced and tailored up-conversion emission. RSC Adv. 2017, 7, 19205–19210.
Liang, X.; Wang, X.; Zhuang, J.; Peng, Q.; Li, Y. Synthesis of NaYF4 nanocrystals with predictable phase and shape. Adv. Funct. Mater. 2007, 17, 2757–2765.
Wu, W.; Yang, Y. Q.; Yang, Y.; Yang, Y. M.; Zhang, K. Y.; Guo, L.; Ge, H. F.; Chen, X. W.; Liu, J.; Feng, H. Molecular engineering of an organic NIR-II fluorophore with aggregation-induced emission characteristics for in vivo imaging. Small 2019, 15, 1805549.
Li, Z. H.; Ding, X.; Cong, H. L.; Wang, S.; Yu, B.; Shen, Y. Q. Recent advances on inorganic lanthanide-doped NIR-II fluorescence nanoprobes for bioapplication. J. Lumin. 2020, 228, 117627.
Meng, X. D.; Pang, X. J.; Zhang, K.; Gong, C. C.; Yang, J. Y.; Dong, H. F.; Zhang, X. J. Recent advances in near-infrared-II fluorescence imaging for deep-tissue molecular analysis and cancer diagnosis. Small 2022, 18, 2202035.
Fan, Y.; Zhang, F. A new generation of NIR-II probes: Lanthanide-based nanocrystals for bioimaging and biosensing. Adv. Opt. Mater. 2019, 7, 1801417.
Zou, Q. L.; Marcelot, C.; Ratel-Ramond, N.; Yi, X. D.; Roblin, P.; Frenzel, F.; Resch-Genger, U.; Eftekhari, A.; Bouchet, A.; Coudret, C. et al. Heterogeneous oxysulfide@fluoride core/shell nanocrystals for upconversion-based nanothermometry. ACS Nano 2022, 16, 12107–12117.
Wei, Z.; Liu, Y. W.; Li, B.; Li, J. J.; Lu, S.; Xing, X. W.; Liu, K.; Wang, F.; Zhang, H. J. Correction: Rare-earth based materials: An effective toolbox for brain imaging, therapy, monitoring and neuromodulation. Light Sci. Appl. 2022, 11, 224.