AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

How to build good inverters from nanomaterial-based transistors

Pengkun SunNan Wei( )Panpan ZhangYingjun YangMaguang ZhuHuiwen ShiLian-Mao PengZhiyong Zhang( )
Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-based Electronics, School of Electronics, Peking University, Beijing 100871, China
Show Author Information

Graphical Abstract

Focusing on how optimal inverters can be constructed by nanomaterial-based transistors, we analyzed the relationship between the voltage transition characteristic (VTC) of inverters and on-state current, threshold voltage and ambipolar behavior of field-effect transistors (FETs). Specifically, we recommend that the VTC of inverters can maintain a decent shape by adjusting specific parameters of transistors when other parameters are substandard resulting from material or process limitations.

Abstract

As promising components of future integrated circuits (ICs), field-effect transistors (FETs) based on semiconducting nanomaterials are being extensively investigated. As the most essential component of ICs, inverters are favored to be demonstrated at the infant stage of emerging technologies. However, systematic research is absent to reveal how the parameters of transistors affect the performance of inverters, e.g. the voltage transfer characteristics (VTCs). In this work, systematic analysis about the dependency between transistor- and inverter-level metrics have been carried out for both complementary metal-oxide-semiconductor (CMOS) and monotype (p-type-only and n-type-only) technologies, which is further experimentally demonstrated by carbon nanotube FETs and ICs. We also propose guidelines towards the high noise margin and rail-to-rail inverter design based on nanomaterials.

Electronic Supplementary Material

Download File(s)
12274_2023_5678_MOESM1_ESM.pdf (882.9 KB)

References

[1]

Franklin, A. D.; Luisier, M.; Han, S. J.; Tulevski, G.; Breslin, C. M.; Gignac, L.; Lundstrom, M. S.; Haensch, W. Sub-10 nm carbon nanotube transistor. Nano Lett. 2012, 12, 758–762.

[2]

Qiu, C. G.; Zhang, Z. Y.; Xiao, M. M.; Yang, Y. J.; Zhong, D. L.; Peng, L. M. Scaling carbon nanotube complementary transistors to 5-nm gate lengths. Science 2017, 355, 271–276.

[3]

Zhong, D. L.; Zhang, Z. Y.; Ding, L.; Han, J.; Xiao, M. M.; Si, J.; Xu, L.; Qiu, C. G.; Peng, L. M. Gigahertz integrated circuits based on carbon nanotube films. Nat. Electron. 2018, 1, 40–45.

[4]

Liu, L. J.; Han, J.; Xu, L.; Zhou, J. S.; Zhao, C. Y.; Ding, S. J.; Shi, H. W.; Xiao, M. M.; Ding, L.; Ma, Z. et al. Aligned, high-density semiconducting carbon nanotube arrays for high-performance electronics. Science 2020, 368, 850–856.

[5]

Geim, A. K. Graphene: Status and prospects. Science 2009, 324, 1530–1534.

[6]

Lin, Y. M.; Valdes-Garcia, A.; Han, S. J.; Farmer, D. B.; Meric, I.; Sun, Y. N.; Wu, Y. Q.; Dimitrakopoulos, C.; Grill, A.; Avouris, P. et al. Wafer-scale graphene integrated circuit. Science 2011, 332, 1294–1297.

[7]

Li, X. F.; Yang, L. M.; Si, M. W.; Li, S. C.; Huang, M. Q.; Ye, P. D.; Wu, Y. Q. Performance potential and limit of MoS2 transistors. Adv. Mater. 2015, 27, 1547–1552.

[8]

Li, T. T.; Guo, W.; Ma, L.; Li, W. S.; Yu, Z. H.; Han, Z.; Gao, S.; Liu, L.; Fan, D. X.; Wang, Z. X. et al. Epitaxial growth of wafer-scale molybdenum disulfide semiconductor single crystals on sapphire. Nat. Nanotechnol. 2021, 16, 1201–1207.

[9]

Xuan, Y.; Wu, Y. Q.; Ye, P. D. High-performance inversion-type enhancement-mode InGaAs MOSFET with maximum drain current exceeding 1 A/mm. IEEE Electron Device Lett. 2008, 29, 294–296.

[10]
Kim, D. H.; Kim, T. W.; Baek, R. H.; Kirsch, P. D.; Maszara, W.; del Alamo, J. A.; Antoniadis, D. A.; Urteaga, M.; Brar, B.; Kwon, H. M. et al. High-performance III-V devices for future logic applications. In 2014 IEEE International Electron Devices Meeting, San Francisco, USA, 2014, pp 25.2. 1–25.2. 4.
[11]

Chau, R.; Datta, S.; Doczy, M.; Doyle, B.; Jin, B.; Kavalieros, J.; Majumdar, A.; Metz, M.; Radosavljevic, M. Benchmarking nanotechnology for high-performance and low-power logic transistor applications. IEEE Trans. Nanotechnol. 2005, 4, 153–158.

[12]

Cavin, R. K.; Lugli, P.; Zhirnov, V. V. Science and engineering beyond Moore’s law. Proc. IEEE 2012, 100, 1720–1749.

[13]
Semiconductor Industry Association. 2015 International Technology Roadmap for Semiconductors (ITRS) [Online]. https://www.semiconductors.org/resources/2015-international-technology-roadmap-for-semiconductors-itrs/. (accessed Nov 24, 2022)
[14]

Yang, Y. J.; Ding, L.; Han, J.; Zhang, Z. Y.; Peng, L. M. High-performance complementary transistors and medium-scale integrated circuits based on carbon nanotube thin films. ACS Nano 2017, 11, 4124–4132.

[15]

Chen, B. Y.; Zhang, P. P.; Ding, L.; Han, J.; Qiu, S.; Li, Q. W.; Zhang, Z. Y.; Peng, L. M. Highly uniform carbon nanotube field-effect transistors and medium scale integrated circuits. Nano Lett. 2016, 16, 5120–5128.

[16]

Radisavljevic, B.; Whitwick, M. B.; Kis, A. Integrated circuits and logic operations based on single-layer MoS2. ACS Nano 2011, 5, 9934–9938.

[17]

Wang, H.; Yu, L. L.; Lee, Y. H.; Shi, Y. M.; Hsu, A.; Chin, M. L.; Li, L. J.; Dubey, M.; Kong, J.; Palacios, T. Integrated circuits based on bilayer MoS2 transistors. Nano Lett. 2012, 12, 4674–4680.

[18]

Zhao, C. Y.; Zhong, D. L.; Liu, L. J.; Yang, Y. J.; Shi, H. W.; Peng, L. M.; Zhang, Z. Y. Strengthened complementary metal-oxide-semiconductor logic for small-band-gap semiconductor-based high-performance and low-power application. ACS Nano 2020, 14, 15267–15275.

[19]
Sedra, A. S.; Smith, K. C.; Carusone, T. C.; Gaudet, V. Microelectronic Circuits, 8th ed.; Oxford University Press: New York, 2020; pp 1235–1236.
[20]
Anderson, B.; Anderson, R. Fundamentals of Semiconductor Devices; McGraw-Hill, Inc.: New York, 2004.
[21]

Martel, R.; Derycke, V.; Lavoie, C.; Appenzeller, J.; Chan, K. K.; Tersoff, J.; Avouris, P. Ambipolar electrical transport in semiconducting single-wall carbon nanotubes. Phys. Rev. Lett. 2001, 87, 256805.

[22]

McEuen, P. L.; Park, J. Y. Electron transport in single-walled carbon nanotubes. MRS Bull. 2004, 29, 272–275.

[23]

Appenzeller, J.; Knoch, J.; Derycke, V.; Martel, R.; Wind, S.; Avouris, P. Field-modulated carrier transport in carbon nanotube transistors. Phys. Rev. Lett. 2002, 89, 126801.

[24]

Usuda, K.; Kamata, Y.; Kamimuta, Y.; Mori, T.; Koike, M.; Tezuka, T. High-performance poly-Ge short-channel metal-oxide-semiconductor field-effect transistors formed on SiO2 layer by flash lamp annealing. Appl. Phys. Express 2014, 7, 056501.

[25]

Lind, E.; Persson, A. I.; Samuelson, L.; Wernersson, L. E. Improved subthreshold slope in an InAs nanowire heterostructure field-effect transistor. Nano Lett. 2006, 6, 1842–1846.

[26]

Javey, A.; Guo, J.; Farmer, D. B.; Wang, Q.; Yenilmez, E.; Gordon, R. G.; Lundstrom, M.; Dai, H. J. Self-aligned ballistic molecular transistors and electrically parallel nanotube arrays. Nano Lett. 2004, 4, 1319–1322.

[27]

Zhang, Z. Y.; Wang, S.; Wang, Z. X.; Ding, L.; Pei, T.; Hu, Z. D.; Liang, X. L.; Chen, Q.; Li, Y.; Peng, L. M. Almost perfectly symmetric SWCNT-based CMOS devices and scaling. ACS Nano 2009, 3, 3781–3787.

[28]

Hills, G.; Lau, C.; Wright, A.; Fuller, S.; Bishop, M. D.; Srimani, T.; Kanhaiya, P.; Ho, R.; Amer, A.; Stein, Y. et al. Modern microprocessor built from complementary carbon nanotube transistors. Nature 2019, 572, 595–602.

[29]

Liu, L. J.; Ding, L.; Zhong, D. L.; Han, J.; Wang, S.; Meng, Q. H.; Qiu, C. G.; Zhang, X. Y.; Peng, L. M.; Zhang, Z. Y. Carbon nanotube complementary gigahertz integrated circuits and their applications on wireless sensor interface systems. ACS Nano 2019, 13, 2526–2535.

[30]
Wu, H.; Conrad, N.; Luo, W.; Ye, P. D. First experimental demonstration of Ge CMOS circuits. In 2014 IEEE International Electron Devices Meeting, San Francisco, USA, 2014, pp 9.3. 1–9.3. 4.
[31]

Passlack, M. Off-State current limits of narrow bandgap MOSFETs. IEEE Trans. Electron Devices 2006, 53, 2773–2778.

[32]

Biggs, J.; Myers, J.; Kufel, J.; Ozer, E.; Craske, S.; Sou, A.; Ramsdale, C.; Williamson, K.; Price, R.; White, S. A natively flexible 32-bit Arm microprocessor. Nature 2021, 595, 532–536.

[33]
Mynikko. Intel 8088 - 1979 [Online]. http://www.mynikko.com/CPU/8088.html (accessed Nov 24, 2022).
[34]

Gonzalez, R.; Gordon, B. M.; Horowitz, M. A. Supply and threshold voltage scaling for low power CMOS. IEEE J. Solid-State Circuits 1997, 32, 1210–1216.

[35]

Zhang, Z. Y.; Wang, S.; Ding, L.; Liang, X. L.; Pei, T.; Shen, J.; Xu, H. L.; Chen, Q.; Cui, R. L.; Li, Y. et al. Self-aligned ballistic n-type single-walled carbon nanotube field-effect transistors with adjustable threshold voltage. Nano Lett. 2008, 8, 3696–3701.

[36]

Zhong, D. L.; Zhao, C. Y.; Liu, L. J.; Zhang, Z. Y.; Peng, L. M. Continuous adjustment of threshold voltage in carbon nanotube field-effect transistors through gate engineering. Appl. Phys. Lett. 2018, 112, 153109.

[37]

Park, J. S.; Jeong, J. K.; Mo, Y. G.; Kim, H. D.; Kim, C. J. Control of threshold voltage in ZnO-based oxide thin film transistors. Appl. Phys. Lett. 2008, 93, 033513.

[38]

Huang, M. Q.; Li, S. M.; Zhang, Z. F.; Xiong, X.; Li, X. F.; Wu, Y. Q. Multifunctional high-performance van der Waals heterostructures. Nat. Nanotechnol. 2017, 12, 1148–1154.

[39]

Liu, Y. D.; Ang, K. W. Monolithically Integrated flexible black phosphorus complementary inverter circuits. ACS Nano 2017, 11, 7416–7423.

[40]

Li, S. L.; Miyazaki, H.; Kumatani, A.; Kanda, A.; Tsukagoshi, K. Low operating bias and matched input-output characteristics in graphene logic inverters. Nano Lett. 2010, 10, 2357–2362.

[41]

Zhang, H.; Li, C.; Wang, J. L.; Hu, W. D.; Zhang, D. W.; Zhou, P. Complementary logic with voltage zero-loss and nano-watt power via configurable MoS2/WSe2 gate. Adv. Funct. Mater. 2018, 28, 1805171.

[42]

Wei, N.; Gao, N. F.; Xu, H. T.; Liu, Z.; Gao, L.; Jiang, H. X.; Tian, Y.; Chen, Y. F.; Du, X. D.; Peng, L. M. Wafer-scale fabrication of carbon-nanotube-based CMOS transistors and circuits with high thermal stability. Nano Res. 2022, 15, 9875–9880.

Nano Research
Pages 12594-12600
Cite this article:
Sun P, Wei N, Zhang P, et al. How to build good inverters from nanomaterial-based transistors. Nano Research, 2023, 16(11): 12594-12600. https://doi.org/10.1007/s12274-023-5678-y
Topics:

851

Views

4

Crossref

3

Web of Science

3

Scopus

0

CSCD

Altmetrics

Received: 01 January 2023
Revised: 27 February 2023
Accepted: 20 March 2023
Published: 11 May 2023
© Tsinghua University Press 2023
Return