Graphical Abstract

Simultaneously boosting acetylene hydrochlorination activity and avoiding formation of explosive copper acetylide over Cu-based catalyst, which represented a promising alternative to Hg-based and noble metal catalysts, remained challenging. Herein, we fabricated a frustrated single-atom Cu/O Lewis pair catalyst (Cu/O-FLP) by coupling epoxide group (C–O–C) with atom-dispersed Cu-cis-N2C2Cl center to address this challenge. The basic epoxy site modulated the electron-deficient state of Lewis-acidic Cu center and paired with the Cu-cis-N2C2Cl moiety to preferentially break HCl into different electronegative Cu–Clδ− and C–O–Hδ+ intermediates, which further induced both an extra localized electric field to polarize acetylene and a upshift of the d-band center of catalyst, thereby promoting adsorption and enrichment of acetylene by enhancing the dipolar interaction between acetylene and active intermediates. Moreover, the generated Cu–Clδ− and C–O–Hδ+ drastically reduced the energy barrier of rate-limiting step and made vinyl chloride easier to desorb from the Lewis-basic oxygen-atom site rather than traditional Lewis-acidic Cu center. These superiorities ensured a higher activity of Cu/O-FLP compared with its counterparts. Meanwhile, preferential dissociation of HCl endowed single-atom Cu with the coordination-saturated configuration, which impeded formation of explosive copper acetylide by avoiding the direct interaction between Cu and acetylene, ensuring the intrinsic safety during catalysis.
Hutchings, G. J.; Grady, D. T. Hydrochlorination of acetylene: The effect of mercuric chloride concentration on catalyst life. Appl. Catal. 1985, 17, 155–160.
Chen, Z.; Chen, Y. J.; Chao, S. L.; Dong, X. B.; Chen, W. X.; Luo, J.; Liu, C. G.; Wang, D. S.; Chen, C.; Li, W. et al. Single-atom AuI-N3 site for acetylene hydrochlorination reaction. ACS Catal. 2020, 10, 1865–1870.
Huang, C. F.; Zhu, M. Y.; Kang, L. H.; Li, X. Y.; Dai, B. Active carbon supported TiO2-AuCl3/AC catalyst with excellent stability for acetylene hydrochlorination reaction. Chem. Eng. J. 2014, 242, 69–75.
Johnston, P.; Carthey, N.; Hutchings, G. Discovery, development, and commercialization of gold catalysts for acetylene hydrochlorination. J. Am. Chem. Soc. 2015, 137, 14548–14557.
Malta, G.; Kondrat, S. A.; Freakley, S. J.; Davies, C. J.; Lu, L.; Dawson, S.; Thetford, A.; Gibson, E. K.; Morgan, D. J.; Jones, W. et al. Identification of single-site gold catalysis in acetylene hydrochlorination. Science 2017, 355, 1399–1403.
Zhu, M. Y.; Wang, Q. Q.; Chen, K.; Wang, Y.; Huang, C. F.; Dai, H.; Yu, F.; Kang, L. H.; Dai, B. Development of a heterogeneous non-mercury catalyst for acetylene hydrochlorination. ACS Catal. 2015, 5, 5306–5316.
Kaiser, S. K.; Fako, E.; Manzocchi, G.; Krumeich, F.; Hauert, R.; Clark, A. H.; Safonova, O. V.; López, N.; Pérez-Ramírez, J. Nanostructuring unlocks high performance of platinum single-atom catalysts for stable vinyl chloride production. Nat. Catal. 2020, 3, 376–385.
Han, Y.; Sun, M. X.; Li, W.; Zhang, J. L. Influence of chlorine coordination number on the catalytic mechanism of ruthenium chloride catalysts in the acetylene hydrochlorination reaction: A DFT study. Phys. Chem. Chem. Phys. 2015, 17, 7720–7730.
Shang, S. S.; Zhao, W.; Wang, Y.; Li, X. Y.; Zhang, J. L.; Han, Y.; Li, W. Highly efficient Ru@IL/AC to substitute mercuric catalyst for acetylene hydrochlorination. ACS Catal. 2017, 7, 3510–3520.
Zhang, H. Y.; Zhang, T. T.; Jia, Y. M.; Zhang, J. L.; Han, Y. Single-atom ruthenium catalytic sites for acetylene hydrochlorination. J. Phys. Chem. Lett. 2021, 12, 7350–7356.
Zhang, M. M.; Zhang, H. Y.; Li, F.; Peng, W. C.; Yao, L. S.; Dong, Y. Z.; Xie, D. Y.; Liu, Z. B.; Li, C. C.; Zhang, J. L. Construction of Ru-N single sites for effective acetylene hydrochlorination: Effect of polyethyleneimine modifiers. ACS Sustain. Chem. Eng. 2022, 10, 13991–14000.
Wang, B. L.; Yue, Y. X.; Jin, C. X.; Lu, J. Y.; Wang, S. S.; Yu, L.; Guo, L. L.; Li, R. R.; Hu, Z. T.; Pan, Z. Y. et al. Hydrochlorination of acetylene on single-atom Pd/N-doped carbon catalysts: Importance of pyridinic-N synergism. Appl. Catal. B: Environ. 2020, 272, 118944.
Zhao, J.; Yue, Y. X.; Sheng, G. F.; Wang, B. L.; Lai, H. X.; Di, S. X.; Zhai, Y. Y.; Guo, L. L.; Li, X. N. Supported ionic liquid-palladium catalyst for the highly effective hydrochlorination of acetylene. Chem. Eng. J. 2019, 360, 38–46.
Dai, B.; Chen, K.; Wang, Y.; Kang, L. H.; Zhu, M. Y. Boron and nitrogen doping in graphene for the catalysis of acetylene hydrochlorination. ACS Catal. 2015, 5, 2541–2547.
Li, X. Y.; Wang, Y.; Kang, L. H.; Zhu, M. Y.; Dai, B. A novel, non-metallic graphitic carbon nitride catalyst for acetylene hydrochlorination. J. Catal. 2014, 311, 288–294.
Wang, J.; Zhao, F.; Zhang, C. L.; Kang, L. H.; Zhu, M. Y. A novel S, N dual doped carbon catalyst for acetylene hydrochlorination. Appl. Catal. A: Gen. 2018, 549, 68–75.
Conte, M.; Carley, A. F.; Heirene, C.; Willock, D. J.; Johnston, P.; Herzing, A. A.; Kiely, C. J.; Hutchings, G. J. Hydrochlorination of acetylene using a supported gold catalyst: A study of the reaction mechanism. J. Catal. 2007, 250, 231–239.
Malta, G.; Kondrat, S. A.; Freakley, S. J.; Davies, C. J.; Dawson, S.; Liu, X.; Lu, L.; Dymkowski, K.; Fernandez-Alonso, F.; Mukhopadhyay, S. et al. Deactivation of a single-site gold-on-carbon acetylene hydrochlorination catalyst: An X-ray absorption and inelastic neutron scattering study. ACS Catal. 2018, 8, 8493–8505.
Liu, L.; Song, L. T.; Xu, D.; Zhu, M. Y.; Dai, B. Effect of the transforming Ag into an active species (silver chloride) for the acetylene hydrochlorination. ChemCatChem 2021, 13, 4411–4418.
Hutchings, G. J. Vapor phase hydrochlorination of acetylene: Correlation of catalytic activity of supported metal chloride catalysts. J. Catal. 1985, 96, 292–295.
Sun, X. H.; Sun, L.; Li, G. N.; Tuo, Y. X.; Ye, C. L.; Yang, J. R.; Low, J.; Yu, X.; Bitter, J. H.; Lei, Y. P. et al. Phosphorus tailors the d-band center of copper atomic sites for efficient CO2 photoreduction under visible-light irradiation. Angew. Chem., Int. Ed. 2022, 61, e202207677.
Wang, B. L.; Jiang, Z.; Wang, T.; Tang, Q.; Yu, M. D.; Feng, T.; Tian, M.; Chang, R. Q.; Yue, Y. X.; Pan, Z. Y. et al. Controllable synthesis of vacancy-defect Cu site and its catalysis for the manufacture of vinyl chloride monomer. ACS Catal. 2021, 11, 11016–11028.
Wang, T.; Jiang, Z.; Tang, Q.; Wang, B. L.; Wang, S. S.; Yu, M. D.; Chang, R. Q.; Yue, Y. X.; Zhao, J.; Li, X. N. Interactions between atomically dispersed copper and phosphorous species are key for the hydrochlorination of acetylene. Commun. Chem. 2022, 5, 2.
Zhang, X. G.; Lin, H.; Zhang, J.; Qiu, Y. J.; Zhang, Z. D.; Xu, Q.; Meng, G.; Yan, W. S.; Gu, L.; Zheng, L. R. et al. Decreasing the coordinated N atoms in a single-atom Cu catalyst to achieve selective transfer hydrogenation of alkynes. Chem. Sci. 2021, 12, 14599–14605.
Wang, G.; Chen, Z.; Wang, T.; Wang, D. S.; Mao, J. J. P and Cu dual sites on graphitic carbon nitride for photocatalytic CO2 reduction to hydrocarbon fuels with high C2H6 evolution. Angew. Chem., Int. Ed. 2022, 61, e202210789.
Aireddy, D. R.; Ding, K. L. Heterolytic dissociation of H2 in heterogeneous catalysis. ACS Catal. 2022, 12, 4707–4723.
Lin, W. W.; Chen, H.; Lin, G. B.; Yao, S. Y.; Zhang, Z. H.; Qi, J. Z.; Jing, M. Z.; Song, W. Y.; Li, J.; Liu, X. et al. Creating frustrated lewis pairs in defective boron carbon nitride for electrocatalytic nitrogen reduction to ammonia. Angew. Chem., Int. Ed. 2022, 61, e202207807.
Shi, L.; Li, Q.; Ling, C. Y.; Zhang, Y. H.; Ouyang, Y. X.; Bai, X. W.; Wang, J. L. Metal-free electrocatalyst for reducing nitrogen to ammonia using a Lewis acid pair. J. Mater. Chem. A 2019, 7, 4865–4871.
Stephan, D. W.; Erker, G. Frustrated Lewis pair chemistry of carbon, nitrogen, and sulfur oxides. Chem. Sci. 2014, 5, 2625–2641.
Zhang, W. N.; Yang, Z. H.; Wang, H. L.; Lu, L.; Liu, D. P.; Li, T. Z.; Yan, S. C.; Qin, H.; Yu, T.; Zou, Z. G. Crystal facet-dependent frustrated Lewis pairs on dual-metal hydroxide for photocatalytic CO2 reduction. Appl. Catal. B: Environ. 2022, 300, 120748.
Chao, S. L.; Guan, Q. X.; Li, W. Study of the active site for acetylene hydrochlorination in AuCl3/C catalysts. J. Catal. 2015, 330, 273–279.
Wan, F. F.; Chao, S. L.; Guan, Q. X.; Wang, G. C.; Li, W. Reaction mechanisms of acetylene hydrochlorination catalyzed by AuCl3/C catalysts: A density functional study. Catal. Commun. 2017, 101, 120–124.
Delley, B. An all-electron numerical method for solving the local density functional for polyatomic molecules. J. Chem. Phys. 1990, 92, 508–517.
Delley, B. Analytic energy derivatives in the numerical local-density-functional approach. J. Chem. Phys. 1991, 94, 7245–7250.
Delley, B. From molecules to solids with the DMol3 approach. J. Chem. Phys. 2000, 113, 7756–7764.
Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.
Becke, A. D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 1988, 38, 3098–3100.
Lee, C.; Yang, W. T.; Parr, R. G. Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1988, 37, 785–789.
Blöchl, P. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.
Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.
Henkelman, G.; Arnaldsson, A.; Jónsson, H. A fast and robust algorithm for Bader decomposition of charge density. Comput. Mater. Sci. 2006, 36, 354–360.
Sanville, E.; Kenny, S. D.; Smith, R.; Henkelman, G. Improved grid-based algorithm for Bader charge allocation. J. Comp. Chem. 2007, 28, 899–908.
Tang, W.; Sanville, E.; Henkelman, G. A grid-based Bader analysis algorithm without lattice bias. J. Phys.: Condens. Matter 2009, 21, 084204.
Li, F.; Han, G. F.; Noh, H. J.; Kim, S. J.; Lu, Y. L.; Jeong, H.; Fu, Z. P.; Baek, J. B. Boosting oxygen reduction catalysis with abundant copper single atom active sites. Energy Environ. Sci. 2018, 11, 2263–2269.
Guan, A. X.; Chen, Z.; Quan, Y. L.; Peng, C.; Wang, Z. Q.; Sham, T. K.; Yang, C.; Ji, Y. L.; Qian, L. P.; Xu, X. et al. Boosting CO2 electroreduction to CH4 via tuning neighboring single-copper sites. ACS Energy Lett. 2020, 5, 1044–1053.
Xiong, Y.; Wang, S. B.; Chen, W. X.; Zhang, J.; Li, Q. H.; Hu, H. S.; Zheng, L. R.; Yan, W. S.; Gu, L.; Wang, D. S. et al. Construction of dual-active-site copper catalyst containing both Cu-N3 and Cu-N4 sites. Small 2021, 17, 2006834.
Yang, J.; Qi, H. F.; Li, A. Q.; Liu, X. Y.; Yang, X. F.; Zhang, S. X.; Zhao, Q.; Jiang, Q. K.; Su, Y.; Zhang, L. L. et al. Potential-driven restructuring of Cu single atoms to nanoparticles for boosting the electrochemical reduction of nitrate to ammonia. J. Am. Chem. Soc. 2022, 144, 12062–12071.
Huang, C. F.; Tong, Y. B.; Li, J. Q.; Peng, J. C.; Dong, D. D.; Chen, Y. J.; Liu, M. M.; Sun, W.; Wang, Q. Q.; Zhu, M. Y. et al. Protonation-induced site and field reconstruction for ultrafast adsorptive desulfurization over Cu-N-C. Chem. Eng. J. 2023, 452, 139391.
Liu, T.; Mou, J. R.; Wu, Z. P.; Lv, C.; Huang, J. L.; Liu, M. L. A facile and scalable strategy for fabrication of superior bifunctional freestanding air electrodes for flexible zinc-air batteries. Adv. Funct. Mater. 2020, 30, 2003407.
Tong, M. M.; Sun, F. F.; Xie, Y.; Wang, Y.; Yang, Y. Q.; Tian, C. G.; Wang, L.; Fu, H. G. Operando cooperated catalytic mechanism of atomically dispersed Cu-N4 and Zn-N4 for promoting oxygen reduction reaction. Angew. Chem., Int. Ed. 2021, 60, 14005–14012.
Jung, E.; Shin, H.; Lee, B. H.; Efremov, V.; Lee, S.; Lee, H. S.; Kim, J.; Hooch Antink, W.; Park, S.; Lee, K. S. et al. Atomic-level tuning of Co-N-C catalyst for high-performance electrochemical H2O2 production. Nat. Mater. 2020, 19, 436–442.
Chen, W. M.; Jin, H. Q.; He, F.; Cui, P. X.; Cao, C. Y.; Song, W. G. Dynamic evolution of nitrogen and oxygen dual-coordinated single atomic copper catalyst during partial oxidation of benzene to phenol. Nano Res. 2022, 15, 3017–3025.
Hai, X.; Xi, S. B.; Mitchell, S.; Harrath, K.; Xu, H. M.; Akl, D.; Kong, D. B.; Li, J.; Li, Z. J.; Sun, T. et al. Scalable two-step annealing method for preparing ultra-high-density single-atom catalyst libraries. Nat. Nanotechnol. 2022, 17, 174–181.
Wang, J. B.; Niu, K. F.; Xu, C. J.; Zhu, H. M.; Ding, H. H.; Han, D.; Zheng, Y. J.; Xi, J. H.; You, S. F.; Deng, C. et al. Influence of molecular configurations on the desulfonylation reactions on metal surfaces. J. Am. Chem. Soc. 2022, 144, 21596–21605.
Wang, B. Q.; Cheng, C.; Jin, M. M.; He, J.; Zhang, H.; Ren, W.; Li, J.; Wang, D. S.; Li, Y. D. A site distance effect induced by reactant molecule matchup in single-atom catalysts for fenton-like reactions. Angew. Chem., Int. Ed. 2022, 61, e202207268.
Liu, H.; Li, X. X.; Ma, Z. H.; Sun, M. Z.; Li, M. G.; Zhang, Z. Y.; Zhang, L.; Tang, Z. B.; Yao, Y.; Huang, B. L. et al. Atomically dispersed Cu catalyst for efficient chemoselective hydrogenation reaction. Nano Lett. 2021, 21, 10284–10291.
Yang, J.; Liu, W. G.; Xu, M. Q.; Liu, X. Y.; Qi, H. F.; Zhang, L. L.; Yang, X. F.; Niu, S. S.; Zhou, D.; Liu, Y. F. et al. Dynamic behavior of single-atom catalysts in electrocatalysis: Identification of Cu-N3 as an active site for the oxygen reduction reaction. J. Am. Chem. Soc. 2021, 143, 14530–14539.
He, F.; Mi, L.; Shen, Y. F.; Chen, X. H.; Yang, Y. R.; Mei, H.; Liu, S. Q.; Mori, T.; Zhang, Y. J. Driving electrochemical oxygen reduction and hydrazine oxidation reaction by enzyme-inspired polymeric Cu(3,3'-diaminobenzidine) catalyst. J. Mater. Chem. A 2017, 5, 17413–17420.
Li, X. Y.; Pan, X. L.; Yu, L.; Ren, P. J.; Wu, X.; Sun, L. T.; Jiao, F.; Bao, X. H. Silicon carbide-derived carbon nanocomposite as a substitute for mercury in the catalytic hydrochlorination of acetylene. Nat. Commun. 2014, 5, 3688.
Ma, S. H.; Han, Z.; Leng, K. Y.; Liu, X. J.; Wang, Y.; Qu, Y. T.; Bai, J. B. Ionic exchange of metal-organic frameworks for constructing unsaturated copper single-atom catalysts for boosting oxygen reduction reaction. Small 2020, 16, 2001384.
Zhang, S. Q.; Zhang, Z. F.; Si, Y. M.; Li, B.; Deng, F.; Yang, L. X.; Liu, X.; Dai, W. L.; Luo, S. L. Gradient hydrogen migration modulated with self-adapting S vacancy in copper-doped ZnIn2S4 nanosheet for photocatalytic hydrogen evolution. ACS Nano 2021, 15, 15238–15248.
Fang, S.; Zhu, X. R.; Liu, X. K.; Gu, J.; Liu, W.; Wang, D. H.; Zhang, W. N.; Lin, Y.; Lu, J. L.; Wei, S. Q. et al. Uncovering near-free platinum single-atom dynamics during electrochemical hydrogen evolution reaction. Nat. Commun. 2020, 11, 1029.
Shi, J. J.; Wei, Y.; Zhou, D.; Zhang, L. L.; Yang, X. F.; Miao, Z. L.; Qi, H. F.; Zhang, S. X.; Li, A. Q.; Liu, X. Y. et al. Introducing Co-O moiety to Co-N-C single-atom catalyst for ethylbenzene dehydrogenation. ACS Catal. 2022, 12, 7760–7772.
Hwang, S. J.; Kim, S. K.; Lee, J. G.; Lee, S. C.; Jang, J. H.; Kim, P.; Lim, T. H.; Sung, Y. E.; Yoo, S. J. Role of electronic perturbation in stability and activity of Pt-based alloy nanocatalysts for oxygen reduction. J. Am. Chem. Soc. 2012, 134, 19508–19511.
Wang, W.; Chen, J. Q.; Tao, Y. R.; Zhu, S. N.; Zhang, Y. X.; Wu, X. C. Flowerlike Ag-supported Ce-doped Mn3O4 nanosheet heterostructure for a highly efficient oxygen reduction reaction: Roles of metal oxides in Ag surface states. ACS Catal. 2019, 9, 3498–3510.
Mei, S.; Gu, J. J.; Ma, T. Z.; Li, X. N.; Hu, Y. B.; Li, W.; Zhang, J. L.; Han, Y. N-doped activated carbon from used dyeing wastewater adsorbent as a metal-free catalyst for acetylene hydrochlorination. Chem. Eng. J. 2019, 371, 118–129.