AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

A lithium sulfonylimide COF-modified separator for high-performance Li-S batteries

Jie Liu1,3Jinping Zhang1,3Jie Zhu1,3Ruiqi Zhao1,3Yamin Zhang4Yanfeng Ma1,3Chenxi Li1,3Hongtao Zhang1,3( )Yongsheng Chen1,2,3( )
The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin 300071, China
State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
Show Author Information

Graphical Abstract

A lithium sulfonylimide covalent organic framework (COF) (COF-LiSTFSI, LiSTFSI = lithium (4-styrenesulfonyl) (trifluoromethanesulfonyl)imide) was designed and synthesized to modify the separator for lithium-sulfur (Li-S) batteries, providing a solution for addressing issues of polysulfides shuttle effect and promoting Li+ transport. The batteries using COF-LiSTFSI modified separator exhibit a high capacity of 1229.7 mAh·g−1 at 0.2 C and a low attenuation rate of 0.042% per cycle after 1000 cycles at 1 C.

Abstract

Lithium-sulfur (Li-S) batteries are highly regarded as the next-generation high-energy-density secondary batteries due to their high capacity and large theoretical energy density. However, the practical application of these batteries is hindered mainly by the polysulfide shuttle issue. Herein, we designed and synthesized a new lithium sulfonylimide covalent organic framework (COF) material (COF-LiSTFSI, LiSTFSI = lithium (4-styrenesulfonyl) (trifluoromethanesulfonyl)imide), and further used it to modify the common polypropylene (PP) separator of Li-S batteries. The COF-LiSTFSI with sulfonylimide anion groups features stronger electronegativity, thus can effectively facilitate the lithium ion conduction while significantly suppress the diffusion of polysulfides via the electrostatic interaction. Compared with the unmodified PP separator, the COF-LiSTFSI modified separator results in a high ionic conductivity (1.50 mS·cm−1) and Li+ transference number (0.68). Consequently, the Li-S battery using the COF-LiSTFSI modified separator achieves a high capacity of 1229.7 mAh·g−1 at 0.2 C and a low decay rate of only 0.042% per cycle after 1000 cycles at 1 C, compared with those of 941.5 mAh·g−1 and 0.061% using the unmodified PP separator, respectively. These results indicate that by choosing suitable functional groups, an effective strategy for COF-modified separators could be developed for high-performance Li-S batteries.

Electronic Supplementary Material

Download File(s)
12274_2023_5683_MOESM1_ESM.pdf (2.8 MB)

References

[1]

Dunn, B.; Kamath, H.; Tarascon, J. M. Electrical energy storage for the grid: A battery of choices. Science 2011, 334, 928–935.

[2]

Albertus, P.; Babinec, S.; Litzelman, S.; Newman, A. Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries. Nat. Energy 2018, 3, 16–21.

[3]

Guo, X. T.; Xu, H. Y.; Li, W. T.; Liu, Y. Y.; Shi, Y. X.; Li, Q.; Pang, H. Embedding atomically dispersed iron sites in nitrogen-doped carbon frameworks-wrapped silicon suboxide for superior lithium storage. Adv. Sci. 2023, 10, 2206084.

[4]

Bruce, P. G.; Freunberger, S. A.; Hardwick, L. J.; Tarascon, J. M. Li-O2 and Li-S batteries with high energy storage. Nat. Mater. 2012, 11, 19–29.

[5]

Bhargav, A.; He, J. R.; Gupta, A.; Manthiram, A. Lithium-sulfur batteries: Attaining the critical metrics. Joule 2020, 4, 285–291.

[6]

Manthiram, A.; Fu, Y. Z.; Chung, S. H.; Zu, C. X.; Su, Y. S. Rechargeable lithium-sulfur batteries. Chem. Rev. 2014, 114, 11751–11787.

[7]

Pang, Q.; Liang, X.; Kwok, C. Y.; Nazar, L. F. Advances in lithium-sulfur batteries based on multifunctional cathodes and electrolytes. Nat. Energy 2016, 1, 16132.

[8]

Huang, S. Z.; Wang, Z. H.; Von Lim, Y.; Wang, Y.; Li, Y.; Zhang, D. H.; Yang, H. Y. Recent advances in heterostructure engineering for lithium-sulfur batteries. Adv. Energy Mater. 2021, 11, 2003689.

[9]

Chen, Y.; Wang, T. Y.; Tian, H. J.; Su, D. W.; Zhang, Q.; Wang, G. X. Advances in lithium-sulfur batteries: From academic research to commercial viability. Adv. Mater. 2021, 33, 2003666.

[10]

Chen, Z. X.; Zhao, M.; Hou, L. P.; Zhang, X. Q.; Li, B. Q.; Huang, J. Q. Toward practical high-energy-density lithium-sulfur pouch cells: A review. Adv. Mater. 2022, 34, 2201555.

[11]

Wang, M. L.; Song, Y. Z.; Sun, Z. T.; Shao, Y. L.; Wei, C. H.; Xia, Z.; Tian, Z. N.; Liu, Z. F.; Sun, J. Y. Conductive and catalytic VTe2@MgO heterostructure as effective polysulfide promotor for lithium-sulfur batteries. ACS Nano 2019, 13, 13235–13243.

[12]

Xue, W. J.; Shi, Z.; Suo, L. M.; Wang, C.; Wang, Z. Q.; Wang, H. Z.; So, K. P.; Maurano, A.; Yu, D. W.; Chen, Y. M. et al. Intercalation-conversion hybrid cathodes enabling Li-S full-cell architectures with jointly superior gravimetric and volumetric energy densities. Nat. Energy 2019, 4, 374–382.

[13]
Xiao, W.; Kiran, G. K.; Yoo, K.; Kim, J. H.; Xu, H. Y. The dual-site adsorption and high redox activity enabled by hybrid organic–inorganic vanadyl ethylene glycolate for high-rate and long-durability lithium-sulfur batteries. Small, in press, https://doi.org/10.1002/smll.202206750.
[14]

Gao, X.; Zheng, X. L.; Wang, J. Y.; Zhang, Z. W.; Xiao, X.; Wan, J. Y.; Ye, Y. S.; Chou, L. Y.; Lee, H. K.; Wang, J. Y. et al. Incorporating the nanoscale encapsulation concept from liquid electrolytes into solid-state lithium-sulfur batteries. Nano Lett. 2020, 20, 5496–5503.

[15]

Li, S. L.; Zhang, W. F.; Zheng, J. F.; Lv, M. Y.; Song, H. Y.; Du, L. Inhibition of polysulfide shuttles in Li-S batteries: Modified separators and solid-state electrolytes. Adv. Energy Mater. 2021, 11, 2000779.

[16]

Jin, L. N.; Fu, Z. H.; Qian, X. Y.; Li, F.; Wang, Y. H.; Wang, B.; Shen, X. Q. Co-N/KB porous hybrid derived from ZIF 67/KB as a separator modification material for lithium-sulfur batteries. Electrochim. Acta 2021, 382, 138282.

[17]

Pang, Y.; Wei, J. S.; Wang, Y. G.; Xia, Y. Y. Synergetic protective effect of the ultralight MWCNTs/NCQDs modified separator for highly stable lithium-sulfur batteries. Adv. Energy Mater. 2018, 8, 1702288.

[18]

Lei, T. Y.; Chen, W.; Lv, W. Q.; Huang, J. W.; Zhu, J.; Chu, J. W.; Yan, C. Y.; Wu, C. Y.; Yan, Y. C.; He, W. D. et al. Inhibiting polysulfide shuttling with a graphene composite separator for highly robust lithium-sulfur batteries. Joule 2018, 2, 2091–2104.

[19]

Pei, F.; Lin, L. L.; Fu, A.; Mo, S. G.; Ou, D. H.; Fang, X. L.; Zheng, N. F. A two-dimensional porous carbon-modified separator for high-energy-density Li-S batteries. Joule 2018, 2, 323–336.

[20]

Jin, Z. Q.; Xie, K.; Hong, X. B.; Hu, Z. Q.; Liu, X. Application of lithiated Nafion ionomer film as functional separator for lithium sulfur cells. J. Power Sources 2012, 218, 163–167.

[21]

Ma, G. Q.; Huang, F. F.; Wen, Z. Y.; Wang, Q. S.; Hong, X. H.; Jin, J.; Wu, X. W. Enhanced performance of lithium sulfur batteries with conductive polymer modified separators. J. Mater. Chem. A 2016, 4, 16968–16974.

[22]

Jiao, L.; Zhang, C.; Geng, C. N.; Wu, S. C.; Li, H.; Lv, W.; Tao, Y.; Chen, Z. J.; Zhou, G. M.; Li, J. et al. Capture and catalytic conversion of polysulfides by in situ built TiO2–MXene heterostructures for lithium-sulfur batteries. Adv. Energy Mater. 2019, 9, 1900219.

[23]

Luo, Y. F.; Luo, N. N.; Kong, W. B.; Wu, H. C.; Wang, K.; Fan, S. S.; Duan, W. H.; Wang, J. P. Multifunctional interlayer based on molybdenum diphosphide catalyst and carbon nanotube film for lithium-sulfur batteries. Small 2018, 14, 1702853.

[24]

Ghazi, Z. A.; He, X.; Khattak, A. M.; Khan, N. A.; Liang, B.; Iqbal, A.; Wang, J. X.; Sin, H.; Li, L. S.; Tang, Z. Y. MoS2/Celgard separator as efficient polysulfide barrier for long-life lithium-sulfur batteries. Adv. Mater. 2017, 29, 1606817.

[25]

Hong, X. J.; Song, C. L.; Yang, Y.; Tan, H. C.; Li, G. H.; Cai, Y. P.; Wang, H. X. Cerium based metal-organic frameworks as an efficient separator coating catalyzing the conversion of polysulfides for high performance lithium-sulfur batteries. ACS Nano 2019, 13, 1923–1931.

[26]

Song, C. L.; Li, G. H.; Yang, Y.; Hong, X. J.; Huang, S.; Zheng, Q. F.; Si, L. P.; Zhang, M.; Cai, Y. P. 3D catalytic MOF-based nanocomposite as separator coatings for high-performance Li-S battery. Chem. Eng. J. 2020, 381, 122701.

[27]

Chen, C.; Jiang, Q. B.; Xu, H. F.; Zhang, Y. P.; Zhang, B. K.; Zhang, Z. Y.; Lin, Z.; Zhang, S. Q. Ni/SiO2/graphene-modified separator as a multifunctional polysulfide barrier for advanced lithium-sulfur batteries. Nano Energy 2020, 76, 105033.

[28]

Yan, W. Q.; Gao, X. W.; Yang, J. L.; Xiong, X. S.; Xia, S.; Huang, W.; Chen, Y. H.; Fu, L. J.; Zhu, Y. S.; Wu, Y. P. Boosting polysulfide catalytic conversion and facilitating Li+ transportation by ion-selective COFs composite nanowire for Li-S batteries. Small 2022, 18, 2106679.

[29]

Jiang, C.; Tang, M.; Zhu, S. L.; Zhang, J. D.; Wu, Y. C.; Chen, Y.; Xia, C.; Wang, C. L.; Hu, W. P. Constructing universal ionic sieves via alignment of two-dimensional covalent organic frameworks (COFs). Angew. Chem., Int. Ed. 2018, 57, 16072–16076.

[30]

Cao, Y.; Wu, H.; Li, G.; Liu, C.; Cao, L.; Zhang, Y. M.; Bao, W.; Wang, H. L.; Yao, Y.; Liu, S. et al. Ion selective covalent organic framework enabling enhanced electrochemical performance of lithium-sulfur batteries. Nano Lett. 2021, 21, 2997–3006.

[31]

Cao, Y.; Liu, C.; Wang, M. D.; Yang, H.; Liu, S.; Wang, H. L.; Yang, Z. X.; Pan, F. S.; Jiang, Z. Y.; Sun, J. Lithiation of covalent organic framework nanosheets facilitating lithium-ion transport in lithium-sulfur batteries. Energy Storage Mater. 2020, 29, 207–215.

[32]

Xu, J.; An, S. H.; Song, X. Y.; Cao, Y. J.; Wang, N.; Qiu, X.; Zhang, Y.; Chen, J. W.; Duan, X. L.; Huang, J. H. et al. Towards high performance Li-S batteries via sulfonate-rich COF-modified separator. Adv. Mater. 2021, 33, 2105178.

[33]

Gao, J. Y.; Wang, C.; Han, D. W.; Shin, D. M. Single-ion conducting polymer electrolytes as a key jigsaw piece for next-generation battery applications. Chem. Sci. 2021, 12, 13248–13272.

[34]

Li, X. L.; Zhang, C. L.; Cai, S. L.; Lei, X. H.; Altoe, V.; Hong, F.; Urban, J. J.; Ciston, J.; Chan, E. M.; Liu, Y. Facile transformation of imine covalent organic frameworks into ultrastable crystalline porous aromatic frameworks. Nat. Commun. 2018, 9, 2998.

[35]

Fang, R. P.; Zhao, S. Y.; Sun, Z. H.; Wang, D. W.; Cheng, H. M.; Li, F. More reliable lithium-sulfur batteries: Status, solutions, and prospects. Adv. Mater. 2017, 29, 1606823.

[36]

Li, Y. J.; Lin, S. Y.; Wang, D. D.; Gao, T. T.; Song, J. W.; Zhou, P.; Xu, Z. K.; Yang, Z. H.; Xiao, N.; Guo, S. J. Single atom array mimic on ultrathin MOF nanosheets boosts the safety and life of lithium-sulfur batteries. Adv. Mater. 2020, 32, 1906722.

[37]

Zhao, M.; Li, B. Q.; Zhang, X. Q.; Huang, J. Q.; Zhang, Q. A perspective toward practical lithium-sulfur batteries. ACS Cent. Sci. 2020, 6, 1095–1104.

[38]

Wang, L.; Zhang, Y. M.; Guo, H. Y.; Li, J.; Stach, E. A.; Tong, X.; Takeuchi, E. S.; Takeuchi, K. J.; Liu, P.; Marschilok, A. C. et al. Structural and electrochemical characteristics of Ca-doped “flower-like” Li4Ti5O12 motifs as high-rate anode materials for lithium-ion batteries. Chem. Mater. 2018, 30, 671–684.

Nano Research
Pages 12601-12607
Cite this article:
Liu J, Zhang J, Zhu J, et al. A lithium sulfonylimide COF-modified separator for high-performance Li-S batteries. Nano Research, 2023, 16(11): 12601-12607. https://doi.org/10.1007/s12274-023-5683-1
Topics:

1126

Views

23

Crossref

23

Web of Science

23

Scopus

0

CSCD

Altmetrics

Received: 21 February 2023
Revised: 12 March 2023
Accepted: 21 March 2023
Published: 28 April 2023
© Tsinghua University Press 2023
Return