Graphical Abstract

The active site engineering of electrocatalysts, as one of the most economical and technological approaches, is a promising strategy to enhance the intrinsic activity and selectivity towards electrochemical CO2 reduction reaction. Herein, an indium-based porphyrin framework (In-TCPP) with a well-defined structure, highly dispersed catalytic center, and good stability was constructed for efficient CO2-to-formate conversion. In-TCPP could achieve a high Faraday efficiency for formate (90%) and a cathodic energy efficiency of 63.8% in flow cells. In situ attenuated total reflectance Fourier transform infrared spectroscopy and density functional theory calculation confirm that the crucial intermediate is *COOH species which contributes to the formation of formate. This work is expected to provide novel insights into the precise design of active sites for high-performance electrocatalysts towards electrochemical CO2 reduction reaction.
Zhang, Z. D.; Zhu, J. X.; Chen, S. H.; Sun, W. M.; Wang, D. S. Liquid fluxional Ga single atom catalysts for efficient electrochemical CO2 reduction. Angew. Chem., Int. Ed. 2023, 62, e202215136.
Chen, S. H.; Li, W. H.; Jiang, W. J.; Yang, J. R.; Zhu, J. X.; Wang, L. Q.; Ou, H. H.; Zhuang, Z. C.; Chen, M. Z.; Sun, X. H. et al. MOF encapsulating n-heterocyclic carbene-ligated copper single-atom site catalyst towards efficient methane electrosynthesis. Angew. Chem., Int. Ed. 2022, 61, e202114450.
Ma, W. C.; Xie, S. J.; Liu, T. T.; Fan, Q. Y.; Ye, J. Y.; Sun, F. F.; Jiang, Z.; Zhang, Q. H.; Cheng, J.; Wang, Y. Electrocatalytic reduction of CO2 to ethylene and ethanol through hydrogen-assisted C–C coupling over fluorine-modified copper. Nat. Catal. 2020, 3, 478–487.
Ren, S. X.; Joulié, D.; Salvatore, D.; Torbensen, K.; Wang, M.; Robert, M.; Berlinguette, C. P. Molecular electrocatalysts can mediate fast, selective CO2 reduction in a flow cell. Science 2019, 365, 367–369.
De Luna, P.; Hahn, C.; Higgins, D.; Jaffer, S. A.; Jaramillo, T. F.; Sargent, E. H. What would it take for renewably powered electrosynthesis to displace petrochemical processes. Science 2019, 364, eaav3506.
Nguyen, T. N.; Dinh, C. T. Gas diffusion electrode design for electrochemical carbon dioxide reduction. Chem. Soc. Rev. 2020, 49, 7488–7504.
Hepburn, C.; Adlen, E.; Beddington, J.; Carter, E. A.; Fuss, S.; Mac Dowell, N.; Minx, J. C.; Smith, P.; Williams, C. K. The technological and economic prospects for CO2 utilization and removal. Nature 2019, 575, 87–97.
Sun, X. H.; Tuo, Y.; Ye, C. L.; Chen, C.; Lu, Q.; Li, G. N.; Jiang, P.; Chen, S. H.; Zhu, P.; Ma, M. et al. Phosphorus induced electron localization of single iron sites for boosted CO2 electroreduction reaction. Angew. Chem., Int. Ed. 2021, 60, 23614–23618.
Chu, S. L.; Kang, C.; Park, W.; Han, Y.; Hong, S.; Hao, L. D.; Zhang, H.; Lo, T. W. B.; Robertson, A. W.; Jung, Y. et al. Single atom and defect engineering of CuO for efficient electrochemical reduction of CO2 to C2H4. SmartMat 2022, 3, 194–205.
Xu, H.; Rebollar, D.; He, H.; Chong, L.; Liu, Y.; Liu, C.; Sun, C.; Li, T.; Muntean, J. V.; Winans, R. E.; Liu, D. -J.; Xu, T. Highly selective electrocatalytic CO2 reduction to ethanol by metallic clusters dynamically formed from atomically dispersed copper. Nat. Energy 2020, 5, 623–632.
Liu, F.; Fan, Z. X. Defect engineering of two-dimensional materials for advanced energy conversion and storage. Chem. Soc. Rev. 2023, 52, 1723–1772.
Gu, J. W.; Peng, Y.; Zhou, T.; Ma, J.; Pang, H.; Yamauchi, Y. Porphyrin-based framework materials for energy conversion. Nano Res. Energy 2022, 1, 9120009.
Wang, J.; Zhang, Y. M.; Ma, Y. B.; Yin, J. W.; Wang, Y. H.; Fan, Z. X. Electrocatalytic reduction of carbon dioxide to high-value multicarbon products with metal-organic frameworks and their derived materials. ACS Mater. Lett. 2022, 4, 2058–2079.
Ahmad, T.; Liu, S.; Sajid, M.; Li, K.; Ali, M.; Liu, L.; Chen, W. Electrochemical CO2 reduction to C2+ products using Cu-based electrocatalysts: A review. Nano Res. Energy 2022, 1, e9120021.
Yang, C. H.; Li, S. Y.; Zhang, Z. C.; Wang, H. Q.; Liu, H. L.; Jiao, F.; Guo, Z. G.; Zhang, X. T.; Hu, W. P. Organic-inorganic hybrid nanomaterials for electrocatalytic CO2 reduction. Small 2020, 16, 2001847.
Wang, Y. N.; Zheng, Y.; Han, C.; Chen, W. Surface charge transfer doping for two-dimensional semiconductor-based electronic and optoelectronic devices. Nano Res. 2021, 14, 1682–1697.
Yang, C. H.; Gao, Z. Q.; Wang, D. J.; Li, S. Y.; Li, J. J.; Zhu, Y. T.; Wang, H. Q.; Yang, W. J.; Gao, X. J.; Zhang, Z. C. et al. Bimetallic phthalocyanine heterostructure used for highly selective electrocatalytic CO2 reduction. Sci. China Mater. 2022, 65, 155–162.
Li, J. J.; Abbas, S. U.; Wang, H. Q.; Zhang, Z. C.; Hu, W. P. Recent advances in interface engineering for electrocatalytic CO2 reduction reaction. Nano-Micro Lett. 2021, 13, 216.
Shi, Y. X.; Hou, M.; Li, J. J.; Li, L.; Zhang, Z. C. Cu-based tandem catalysts for electrochemical CO2 reduction. Acta Phys. -Chim. Sin. 2022, 38, 2206020.
Zhu, Y. T.; Gao, Z. Q.; Zhang, Z. C.; Lin, T.; Zhang, Q. H.; Liu, H. L.; Gu, L.; Hu, W. P. Selectivity regulation of CO2 electroreduction on asymmetric AuAgCu tandem heterostructures. Nano Res. 2022, 15, 7861–7867.
Ma, Y. B.; Yu, J. L.; Sun, M. Z.; Chen, B.; Zhou, X. C.; Ye, C. L.; Guan, Z. Q.; Guo, W. H.; Wang, G.; Lu, S. Y. et al. Confined growth of silver-copper Janus nanostructures with {100} facets for highly selective tandem electrocatalytic carbon dioxide reduction. Adv. Mater. 2022, 34, 2110607.
Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.
Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.
Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 2011, 32, 1456–1465.
Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104.
Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.
Monkhorst, H. J.; Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192.
Rhauderwiek, T.; Waitschat, S.; Wuttke, S.; Reinsch, H.; Bein, T.; Stock, N. Nanoscale synthesis of two Porphyrin-based MOFs with gallium and indium. Inorg. Chem. 2016, 55, 5312–5319.
Yang, D. R.; Zuo, S. W.; Yang, H. Z.; Zhou, Y.; Wang, X. Freestanding millimeter-scale porphyrin-based monoatomic layers with 0.28 nm thickness for CO2 electrocatalysis. Angew. Chem., Int. Ed. 2020, 59, 18954–18959.
Tian, Y. B.; Vankova, N.; Weidler, P.; Kuc, A.; Heine, T.; Wöll, C.; Gu, Z. G.; Zhang, J. Oriented growth of in-Oxo chain based metal-porphyrin framework thin film for high-sensitive photodetector. Adv. Sci. 2021, 8, 2100548.
Zhao, Y. W.; Wang, J. N.; Pei, R. J. Micron-sized ultrathin metal-organic framework sheet. J. Am. Chem. Soc. 2020, 142, 10331–10336.
Gao, Z. Q.; Wang, C. Y.; Li, J. J.; Zhu, Y. T.; Zhang, Z. C.; Hu, W. P. Conductive metal-organic frameworks for electrocatalysis: Achievements, challenges, and opportunities. Acta Phys. Chim. Sin. 2021, 37, 2010025.
Wang, Z. T.; Zhou, Y. S.; Xia, C. F.; Guo, W.; You, B.; Xia, B. Y. Efficient electroconversion of carbon dioxide to formate by a reconstructed amino-functionalized indium-organic framework electrocatalyst. Angew. Chem., Int. Ed. 2021, 60, 19107–19112.
Kang, X. C.; Wang, B.; Hu, K.; Lyu, K.; Han, X.; Spencer, B. F.; Frogley, M. D.; Tuna, F.; McInnes, E. J. L.; Dryfe, R. A. W. Quantitative electro-reduction of CO2 to liquid fuel over electro-synthesized metal-organic frameworks. J. Am. Chem. Soc. 2020, 142, 17384–17392.
Zhang, N. Q.; Zhang, X. X.; Kang, Y. K.; Ye, C. L.; Jin, R.; Yan, H.; Lin, R.; Yang, J. R.; Xu, Q.; Wang, Y. et al. A supported Pd2 dual-atom site catalyst for efficient electrochemical CO2 reduction. Angew. Chem., Int. Ed. 2021, 60, 13388–13393.
Zeng, G.; He, Y. C.; Ma, D. D.; Luo, S. W.; Zhou, S. H.; Cao, C. S.; Li, X. F.; Wu, X. T.; Liao, H. G.; Zhu, Q. L. Reconstruction of ultrahigh-aspect-ratio crystalline bismuth-organic hybrid nanobelts for selective electrocatalytic CO2 reduction to formate. Adv. Funct. Mater. 2022, 32, 2201125.
Yao, K. L.; Wang, H. B.; Yang, X. T.; Huang, Y.; Kou, C. D.; Jing, T.; Chen, S. H.; Wang, Z. Y.; Liu, Y. C.; Liang, H. Y. Metal-organic framework derived dual-metal sites for electroreduction of carbon dioxide to HCOOH. Appl. Catal. B: Environ. 2022, 311, 121377.
Gao, Z. Q.; Li, J. J.; Zhang, Z. C.; Hu, W. P. Recent advances in carbon-based materials for electrochemical CO2 reduction reaction. Chin. Chem. Lett. 2022, 33, 2270–2280.
Wang, N.; Miao, R. K.; Lee, G.; Vomiero, A.; Sinton, D.; Ip, A. H.; Liang, H. Y.; Sargent, E. H. Suppressing the liquid product crossover in electrochemical CO2 reduction. SmartMat 2021, 2, 12–16.
Li, R. Z.; Wang, D. S. Understanding the structure–performance relationship of active sites at atomic scale. Nano Res. 2022, 15, 6888–6923.
Zhu, S. Q.; Li, T. H.; Cai, W. B.; Shao, M. H. CO2 electrochemical reduction as probed through infrared spectroscopy. ACS Energy Lett. 2019, 4, 682–689.
Wang, B. Q.; Chen, S. H.; Zhang, Z. D.; Wang, D. S. Low-dimensional material supported single-atom catalysts for electrochemical CO2 reduction. SmartMat 2022, 3, 84–110.
Zhang, X. Y.; Li, W. J.; Chen, J. C.; Wu, X. F.; Liu, Y. W.; Mao, F. X.; Yuan, H. Y.; Zhu, M. H.; Dai, S.; Wang, H. F. et al. In operando identification of in situ formed metalloid Zincδ+ active sites for highly efficient electrocatalyzed carbon dioxide reduction. Angew. Chem., Int. Ed. 2022, 61, e202202298.
Tao, Z.; Pearce, A. J.; Mayer, J. M.; Wang, H. Bridge sites of au surfaces are active for electrocatalytic CO2 reduction. J. Am. Chem. Soc. 2022, 144, 8641–8648.
Fan, K.; Jia, Y. F.; Ji, Y. F.; Kuang, P. Y.; Zhu, B. C.; Liu, X. Y.; Yu, J. G. Curved surface boosts electrochemical CO2 reduction to formate via bismuth nanotubes in a wide potential window. ACS Catal. 2020, 10, 358–364.
Yao, D. Z.; Tang, C.; Vasileff, A.; Zhi, X.; Jiao, Y.; Qiao, S. Z. The controllable reconstruction of Bi-MOFs for electrochemical CO2 reduction through electrolyte and potential mediation. Angew. Chem., Int. Ed. 2021, 60, 18178–18184.
Guo, W. H.; Zhang, Y. F.; Su, J. J.; Song, Y.; Huang, L. B.; Cheng, L.; Cao, X. H.; Dou, Y. B.; Ma, Y. B.; Ma, C. Y. et al. Transient solid-state laser activation of indium for high-performance reduction of CO2 to formate. Small 2022, 18, 2201311.