AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

A robust and unique approach for tuning the energy level of Ag2Se quantum dots via “on-surface” manipulation of nitrogen-containing groups of surface-coordinated ligands

Meng-Yao Luo1,§Bo Tang1,§An-An Liu2,3Jing-Ya Zhao1Zhi-Ling Zhang1Dai-Wen Pang1,2,3( )
The Institute for Advanced Studies and College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, Research Center for Analytical Sciences, College of Chemistry, Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300071, China
Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China

§ Meng-Yao Luo and Bo Tang contributed equally to this work.

Show Author Information

Graphical Abstract

The amino group of glutathione (GSH) binds to near-infrared (NIR) Ag2Se quantum dots (QDs) in a pH-dependent manner, whereas the binding of the thiol group is pH-independent. By “on-surface” manipulating binding states of amino groups, the bandgap and photoluminescence (PL) of QD-ligand complexes reversibly shift by up to 140 meV and 75 nm, respectively.

Abstract

Effects of surface chemistry on energy levels or optical properties of semiconductor nanocrystals have attracted considerable attention and show great promise in broad applications. Yet, it remains challenging to controllably tune the photoluminescence (PL) of quantum dots (QDs) by manipulating surface ligands. Herein, we investigated effects of the ligand, glutathione (GSH), on PL properties of near-infrared (NIR) Ag2Se QDs by “on-surface” manipulation, that is, precisely manipulating the chelating group without dissociating the ligand from the surface. The anchoring of the amino group was found to be controlled by solution pH, whereas the binding of the thiol group to the Ag+ was pH independent, maintaining the “on-surface” state of GSH. By tuning the pH-controlled binding of amino groups, the energy level or the bandgap of Ag2Se QDs could be increased by up to 140 meV. The increased bandgap resulted in the blueshift of PL spectrum, which could be reversibly tuned by up to 75 nm. The pH-mediated tunable PL properties of QDs could also be extended to other nitrogen-containing pH-sensitive groups which could coordinate to the Ag+, not limited to the amino group. Our work would facilitate the study of nanocrystal surface chemistry and our model that the binding of amino groups affected energy levels of Ag2Se QDs might facilitate new insights into the electronic structure and energy level of other QD-ligand complexes.

Electronic Supplementary Material

Download File(s)
12274_2023_5688_MOESM1_ESM.pdf (2.5 MB)

References

[1]

Dai, X. L.; Deng, Y. Z.; Peng, X. G.; Jin, Y. Z. Quantum-dot light-emitting diodes for large-area displays: Towards the dawn of commercialization. Adv. Mater. 2017, 29, 1607022.

[2]

Pietryga, J. M.; Park, Y. S.; Lim, J.; Fidler, A. F.; Bae, W. K.; Brovelli, S.; Klimov, V. I. Spectroscopic and device aspects of nanocrystal quantum dots. Chem. Rev. 2016, 116, 10513–10622.

[3]

Caputo, J. A.; Frenette, L. C.; Zhao, N.; Sowers, K. L.; Krauss, T. D.; Weix, D. J. General and efficient C–C bond forming photoredox catalysis with semiconductor quantum dots. J. Am. Chem. Soc. 2017, 139, 4250–4253.

[4]

Ci, R. N.; Huang, C.; Zhao, L. M.; Qiao, J.; Chen, B.; Feng, K.; Tung, C. H.; Wu, L. Z. General and efficient C–P bond formation by quantum dots and visible light. CCS Chem. 2022, 4, 2946–2952.

[5]

Liu, S. L.; Wang, Z. G.; Zhang, Z. L.; Pang, D. W. Tracking single viruses infecting their host cells using quantum dots. Chem. Soc. Rev. 2016, 45, 1211–1224.

[6]

Zhou, J.; Yang, Y.; Zhang, C. Y. Toward biocompatible semiconductor quantum dots: From biosynthesis and bioconjugation to biomedical application. Chem. Rev. 2015, 115, 11669–11717.

[7]

Hartley, C. L.; Kessler, M. L.; Dempsey, J. L. Molecular-level insight into semiconductor nanocrystal surfaces. J. Am. Chem. Soc. 2021, 143, 1251–1266.

[8]

Kilina, S. V.; Tamukong, P. K.; Kilin, D. S. Surface chemistry of semiconducting quantum dots: Theoretical perspectives. Acc. Chem. Res. 2016, 49, 2127–2135.

[9]

Harris, R. D.; Bettis Homan, S.; Kodaimati, M.; He, C.; Nepomnyashchii, A. B.; Swenson, N. K.; Lian, S. C.; Calzada, R.; Weiss, E. A. Electronic processes within quantum dot-molecule complexes. Chem. Rev. 2016, 116, 12865–12919.

[10]

Li, G. M.; Fei, X. N.; Liu, H. F.; Gao, J.; Nie, J. Y.; Wang, Y. B.; Tian, Z. D.; He, C. C.; Wang, J. L.; Ji, C. et al. Fluorescence and optical activity of chiral CdTe quantum dots in their interaction with amino acids. ACS Nano 2020, 14, 4196–4205.

[11]

Kroupa, D. M.; Vörös, M.; Brawand, N. P.; Bronstein, N.; McNichols, B. W.; Castaneda, C. V.; Nozik, A. J.; Sellinger, A.; Galli, G.; Beard, M. C. Optical absorbance enhancement in PbS QD/cinnamate ligand complexes. J. Phys. Chem. Lett. 2018, 9, 3425–3433.

[12]

Ben-Moshe, A.; Teitelboim, A.; Oron, D.; Markovich, G. Probing the interaction of quantum dots with chiral capping molecules using circular dichroism spectroscopy. Nano Lett. 2016, 16, 7467–7473.

[13]

Westmoreland, D. E.; López-Arteaga, R.; Weiss, E. A. N-heterocyclic carbenes as reversible exciton-delocalizing ligands for photoluminescent quantum dots. J. Am. Chem. Soc. 2020, 142, 2690–2696.

[14]

Tang, J.; Kemp, K. W.; Hoogland, S.; Jeong, K. S.; Liu, H.; Levina, L.; Furukawa, M.; Wang, X. H.; Debnath, R.; Cha, D. et al. Colloidal-quantum-dot photovoltaics using atomic-ligand passivation. Nat. Mater. 2011, 10, 765–771.

[15]

Chuang, C. H. M.; Brown, P. R.; Bulović, V.; Bawendi, M. G. Improved performance and stability in quantum dot solar cells through band alignment engineering. Nat. Mater. 2014, 13, 796–801.

[16]

Kroupa, D. M.; Vörös, M.; Brawand, N. P.; McNichols, B. W.; Miller, E. M.; Gu, J.; Nozik, A. J.; Sellinger, A.; Galli, G.; Beard, M. C. Tuning colloidal quantum dot band edge positions through solution-phase surface chemistry modification. Nat. Commun. 2017, 8, 15257.

[17]

Yu, M.; Doak, P.; Tamblyn, I.; Neaton, J. B. Theory of covalent adsorbate frontier orbital energies on functionalized light-absorbing semiconductor surfaces. J. Phys. Chem. Lett. 2013, 4, 1701–1706.

[18]

Liu, M. X.; Voznyy, O.; Sabatini, R.; García De Arquer, F. P.; Munir, R.; Balawi, A. H.; Lan, X. Z.; Fan, F. J.; Walters, G.; Kirmani, A. R. et al. Hybrid organic–inorganic inks flatten the energy landscape in colloidal quantum dot solids. Nat. Mater. 2017, 16, 258–263.

[19]

Kennehan, E. R.; Munson, K. T.; Grieco, C.; Doucette, G. S.; Marshall, A. R.; Beard, M. C.; Asbury, J. B. Influence of ligand structure on excited state surface chemistry of lead sulfide quantum dots. J. Am. Chem. Soc. 2021, 143, 13824–13834.

[20]

Giansante, C.; Infante, I.; Fabiano, E.; Grisorio, R.; Suranna, G. P.; Gigli, G. “Darker-than-Black” PbS quantum dots: Enhancing optical absorption of colloidal semiconductor nanocrystals via short conjugated ligands. J. Am. Chem. Soc. 2015, 137, 1875–1886.

[21]

Frederick, M. T.; Weiss, E. A. Relaxation of exciton confinement in CdSe quantum dots by modification with a conjugated dithiocarbamate ligand. ACS Nano 2010, 4, 3195–3200.

[22]

Frederick, M. T.; Amin, V. A.; Weiss, E. A. Optical properties of strongly coupled quantum dot-ligand systems. J. Phys. Chem. Lett. 2013, 4, 634–640.

[23]

Brown, P. R.; Kim, D.; Lunt, R. R.; Zhao, N.; Bawendi, M. G.; Grossman, J. C.; Bulović, V. Energy level modification in lead sulfide quantum dot thin films through ligand exchange. ACS Nano 2014, 8, 5863–5872.

[24]

Kuznetsova, V. A.; Mates-Torres, E.; Prochukhan, N.; Marcastel, M.; Purcell-Milton, F.; O’Brien, J.; Visheratina, A. K.; Martinez-Carmona, M.; Gromova, Y.; Garcia-Melchor, M. et al. Effect of chiral ligand concentration and binding mode on chiroptical activity of CdSe/CdS quantum dots. ACS Nano 2019, 13, 13560–13572.

[25]

Choi, J. K.; Haynie, B. E.; Tohgha, U.; Pap, L.; Elliott, K. W.; Leonard, B. M.; Dzyuba, S. V.; Varga, K.; Kubelka, J.; Balaz, M. Chirality inversion of CdSe and CdS quantum dots without changing the stereochemistry of the capping ligand. ACS Nano 2016, 10, 3809–3815.

[26]

Kuno, J.; Imamura, Y.; Katouda, M.; Tashiro, M.; Kawai, T.; Nakashima, T. Inversion of optical activity in the synthesis of mercury sulfide nanoparticles: Role of ligand coordination. Angew. Chem., Int. Ed. 2018, 57, 12022–12026.

[27]

Eagle, F. W.; Park, N.; Cash, M.; Cossairt, B. M. Surface chemistry and quantum dot luminescence: Shell growth, atomistic modification, and beyond. ACS Energy Lett. 2021, 6, 977–984.

[28]

Zhang, X.; Chen, Y.; Lian, L.; Zhang, Z.; Liu, Y.; Song, L.; Geng, C.; Zhang, J.; Xu, S. Stability enhancement of PbS quantum dots by site-selective surface passivation for near-infrared LED application. Nano Res. 2021, 14, 628–634.

[29]

Gao, C.; Wang, J.; Xu, H. X.; Xiong, Y. J. Coordination chemistry in the design of heterogeneous photocatalysts. Chem. Soc. Rev. 2017, 46, 2799–2823.

[30]

Yang, S. Y.; Prendergast, D.; Neaton, J. B. Tuning semiconductor band edge energies for solar photocatalysis via surface ligand passivation. Nano Lett. 2012, 12, 383–388.

[31]

Dong, A. G.; Ye, X. C.; Chen, J.; Kang, Y. J.; Gordon, T.; Kikkawa, J. M.; Murray, C. B. A generalized ligand-exchange strategy enabling sequential surface functionalization of colloidal nanocrystals. J. Am. Chem. Soc. 2011, 133, 998–1006.

[32]

Preske, A.; O’Neill, S. W.; Swartz, B. D.; Liu, J.; Prezhdo, O. V.; Krauss, T. D. Size-programmed synthesis of PbSe quantum dots via secondary phosphine chalcogenides. Chem. Mater. 2019, 31, 8301–8307.

[33]

De Nolf, K.; Capek, R. K.; Abe, S.; Sluydts, M.; Jang, Y.; Martins, J. C.; Cottenier, S.; Lifshitz, E.; Hens, Z. Controlling the size of hot injection made nanocrystals by manipulating the diffusion coefficient of the solute. J. Am. Chem. Soc. 2015, 137, 2495–2505.

[34]

Zhang, M. Y.; Liu, A. A.; Fu, H. H.; Zhang, W.; Zhang, S. H.; Liu, Z. Y.; Jiang, L. H.; Shao, X.; Pang, D. W. Regulation of silver precursor reactivity via tertiary phosphine to synthesize near-infrared Ag2Te with photoluminescence quantum yield of up to 14.7%. Chem. Mater. 2021, 33, 9524–9533.

[35]

Frederick, M. T.; Amin, V. A.; Cass, L. C.; Weiss, E. A. A molecule to detect and perturb the confinement of charge carriers in quantum dots. Nano Lett. 2011, 11, 5455–5460.

[36]

Nag, A.; Kovalenko, M. V.; Lee, J. S.; Liu, W. Y.; Spokoyny, B.; Talapin, D. V. Metal-free inorganic ligands for colloidal nanocrystals: S2−, HS, Se2−, HSe, Te2−, HTe, TeS32−, OH, and NH2 as surface ligands. J. Am. Chem. Soc. 2011, 133, 10612–10620.

[37]

Wang, W. L.; Guo, Y.; Tiede, C.; Chen, S. Y.; Kopytynski, M.; Kong, Y. F.; Kulak, A.; Tomlinson, D.; Chen, R. J.; McPherson, M. et al. Ultraefficient cap-exchange protocol to compact biofunctional quantum dots for sensitive ratiometric biosensing and cell imaging. ACS Appl. Mater. Interfaces 2017, 9, 15232–15244.

[38]

Liu, Z. Y.; Liu, A. A.; Fu, H. H.; Cheng, Q. Y.; Zhang, M. Y.; Pan, M. M.; Liu, L. P.; Luo, M. Y.; Tang, B.; Zhao, W. et al. Breaking through the size control dilemma of silver chalcogenide quantum dots via trialkylphosphine-induced ripening: Leading to Ag2Te emitting from 950 to 2100 nm. J. Am. Chem. Soc. 2021, 143, 12867–12877.

[39]

Liu, A. A.; Sun, E. Z.; Wang, Z. G.; Liu, S. L.; Pang, D. W. Artificially regulated synthesis of nanocrystals in live cells. Natl. Sci. Rev. 2022, 9, nwab162.

[40]

Gu, Y. P.; Cui, R.; Zhang, Z. L.; Xie, Z. X.; Pang, D. W. Ultrasmall near-infrared Ag2Se quantum dots with tunable fluorescence for in vivo imaging. J. Am. Chem. Soc. 2012, 134, 79–82.

[41]

Zhao, J. Y.; Chen, G.; Gu, Y. P.; Cui, R.; Zhang, Z. L.; Yu, Z. L.; Tang, B.; Zhao, Y. F.; Pang, D. W. Ultrasmall magnetically engineered Ag2Se quantum dots for instant efficient labeling and whole-body high-resolution multimodal real-time tracking of cell-derived microvesicles. J. Am. Chem. Soc. 2016, 138, 1893–1903.

[42]

Zhao, J. Y.; Wang, Z. G.; Hu, H.; Zhang, Z. L.; Tang, B.; Luo, M. Y.; Yang, L. L.; Wang, B. S.; Pang, D. W. How different are the surfaces of semiconductor Ag2Se quantum dots with various sizes. Sci. Bull. 2022, 67, 619–625.

[43]

Kim, H. J.; Heo, C. H.; Kim, H. M. Benzimidazole-based ratiometric two-photon fluorescent probes for acidic pH in live cells and tissues. J. Am. Chem. Soc. 2013, 135, 17969–17977.

[44]

Chang, M. J.; Kim, K.; Park, K. S.; Kang, J. S.; Lim, C. S.; Kim, H. M.; Kang, C.; Lee, M. H. High-depth fluorescence imaging using a two-photon FRET system for mitochondrial pH in live cells and tissues. Chem. Commun. 2018, 54, 13531–13534.

[45]

Luo, X.; Yang, H. T.; Wang, H. L.; Ye, Z. W.; Zhou, Z. N.; Gu, L. Y.; Chen, J. Q.; Xiao, Y.; Liang, X. W.; Qian, X. H. et al. Highly sensitive hill-type small-molecule pH probe that recognizes the reversed pH gradient of cancer cells. Anal. Chem. 2018, 90, 5803–5809.

[46]

Ning, P.; Hou, L. L.; Feng, Y.; Xu, G. Y.; Bai, Y. Y.; Yu, H. Z.; Meng, X. M. Real-time visualization of autophagy by monitoring the fluctuation of lysosomal pH with a ratiometric two-photon fluorescent probe. Chem. Commun. 2019, 55, 1782–1785.

[47]

Feng, L. L.; Yu, G. T.; Wu, Y. Y.; Li, G. D.; Li, H.; Sun, Y. H.; Asefa, T.; Chen, W.; Zou, X. X. High-index faceted Ni3S2 nanosheet arrays as highly active and ultrastable electrocatalysts for water splitting. J. Am. Chem. Soc. 2015, 137, 14023–14026.

[48]

Jerkiewicz, G. Standard and reversible hydrogen electrodes: Theory, design, operation, and applications. ACS Catal. 2020, 10, 8409–8417.

[49]

Zhang, W.; Yu, Z. L.; Wu, M.; Ren, J. G.; Xia, H. F.; Sa, G. L.; Zhu, J. Y.; Pang, D. W.; Zhao, Y. F.; Chen, G. Magnetic and folate functionalization enables rapid isolation and enhanced tumor-targeting of cell-derived microvesicles. ACS Nano 2017, 11, 277–290.

[50]

Tian, R.; Shen, Z. Y.; Zhou, Z. J.; Munasinghe, J.; Zhang, X.; Jacobson, O.; Zhang, M. X.; Niu, G.; Pang, D. W.; Cui, R. et al. Ultrasmall quantum dots with broad-spectrum metal doping ability for trimodal molecular imaging. Adv. Funct. Mater. 2019, 29, 1901671.

[51]

Lv, C.; Zhang, T. Y.; Lin, Y.; Tang, M.; Zhai, C. H.; Xia, H. F.; Wang, J.; Zhang, Z. L.; Xie, Z. X.; Chen, G. et al. Transformation of viral light particles into near-infrared fluorescence quantum dot-labeled active tumor-targeting nanovectors for drug delivery. Nano Lett. 2019, 19, 7035–7042.

[52]

Moreels, I.; Justo, Y.; De Geyter, B.; Haustraete, K.; Martins, J. C.; Hens, Z. Size-tunable, bright, and stable PbS quantum dots: A surface chemistry study. ACS Nano 2011, 5, 2004–2012.

[53]

Moreels, I.; Fritzinger, B.; Martins, J. C.; Hens, Z. Surface chemistry of colloidal PbSe nanocrystals. J. Am. Chem. Soc. 2008, 130, 15081–15086.

[54]

Wu, Z. K.; Gayathri, C.; Gil, R. R.; Jin, R. C. Probing the structure and charge state of glutathione-capped Au25(SG)18 clusters by NMR and mass spectrometry. J. Am. Chem. Soc. 2009, 131, 6535–6542.

[55]

Fritzinger, B.; Capek, R. K.; Lambert, K.; Martins, J. C.; Hens, Z. Utilizing self-exchange to address the binding of carboxylic acid ligands to CdSe quantum dots. J. Am. Chem. Soc. 2010, 132, 10195–10201.

[56]

Akira, I. NMR analysis of cellulose dissolved in aqueous NaOH solutions. Cellulose 1997, 4, 99–107.

[57]

Hassan, Y.; Park, J. H.; Crawford, M. L.; Sadhanala, A.; Lee, J.; Sadighian, J. C.; Mosconi, E.; Shivanna, R.; Radicchi, E.; Jeong, M. et al. Ligand-engineered bandgap stability in mixed-halide perovskite LEDs. Nature 2021, 591, 72–77.

[58]

Mićić, O. I.; Sprague, J.; Lu, Z. H.; Nozik, A. J. Highly efficient band-edge emission from InP quantum dots. Appl. Phys. Lett. 1996, 68, 3150–3152.

[59]

Ji, C. Y.; Zhang, Y.; Zhang, T. Q.; Liu, W. Y.; Zhang, X. Y.; Shen, H. Z.; Wang, Y.; Gao, W. Z.; Wang, Y. D.; Zhao, J. et al. Temperature-dependent photoluminescence of Ag2Se quantum dots. J. Phys. Chem. C 2015, 119, 13841–13846.

[60]

Tang, R.; Lee, H.; Achilefu, S. Induction of pH sensitivity on the fluorescence lifetime of quantum dots by NIR fluorescent dyes. J. Am. Chem. Soc. 2012, 134, 4545–4548.

[61]

Amelia, M.; Lincheneau, C.; Silvi, S.; Credi, A. Electrochemical properties of CdSe and CdTe quantum dots. Chem. Soc. Rev. 2012, 41, 5728–5743.

[62]

Haram, S. K.; Quinn, B. M.; Bard, A. J. Electrochemistry of CdS nanoparticles: A correlation between optical and electrochemical band gaps. J. Am. Chem. Soc. 2001, 123, 8860–8861.

[63]

Inamdar, S. N.; Ingole, P. P.; Haram, S. K. Determination of band structure parameters and the quasi-particle gap of CdSe quantum dots by cyclic voltammetry. ChemPhysChem 2008, 9, 2574–2579.

[64]

Querner, C.; Reiss, P.; Sadki, S.; Zagorska, M.; Pron, A. Size and ligand effects on the electrochemical and spectroelectrochemical responses of CdSe nanocrystals. Phys. Chem. Chem. Phys. 2005, 7, 3204–3209.

[65]

Haram, S. K.; Kshirsagar, A.; Gujarathi, Y. D.; Ingole, P. P.; Nene, O. A.; Markad, G. B.; Nanavati, S. P. Quantum confinement in CdTe quantum dots: Investigation through cyclic voltammetry supported by density functional theory (DFT). J. Phys. Chem. C 2011, 115, 6243–6249.

[66]

Kucur, E.; Riegler, J.; Urban, G. A.; Nann, T. Determination of quantum confinement in CdSe nanocrystals by cyclic voltammetry. J. Chem. Phys. 2003, 119, 2333–2337.

[67]

Cui, R.; Gu, Y. P.; Bao, L.; Zhao, J. Y.; Qi, B. P.; Zhang, Z. L.; Xie, Z. X.; Pang, D. W. Near-infrared electrogenerated chemiluminescence of ultrasmall Ag2Se quantum dots for the detection of dopamine. Anal. Chem. 2012, 84, 8932–8935.

[68]

Poznyak, S. K.; Talapin, D. V.; Shevchenko, E. V.; Weller, H. Quantum dot chemiluminescence. Nano Lett. 2004, 4, 693–698.

[69]

Sun, Q. J.; Wang, H. Q.; Yang, C. H.; Li, Y. F. Synthesis and electroluminescence of novel copolymers containing crown ether spacers. J. Mater. Chem. 2003, 13, 800–806.

[70]

Beaupré, S.; Leclerc, M. Fluorene-based copolymers for red-light-emitting diodes. 3.0.CO;2-U">Adv. Funct. Mater. 2002, 12, 192–196.

[71]

Brus, L. E. Electron–electron and electron–hole interactions in small semiconductor crystallites: The size dependence of the lowest excited electronic state. J. Chem. Phys. 1984, 80, 4403–4409.

[72]

Praharaj, S.; Nath, S.; Panigrahi, S.; Basu, S.; Ghosh, S. K.; Pande, S.; Jana, S.; Pal, T. Room temperature synthesis of coinage metal (Ag, Cu) chalcogenides. Chem. Commun. 2006, 36, 3836–3838.

[73]

Sahu, A.; Khare, A.; Deng, D. D.; Norris, D. J. Quantum confinement in silver selenide semiconductor nanocrystals. Chem. Commun. 2012, 48, 5458–5460.

[74]

He, C.; Weinberg, D. J.; Nepomnyashchii, A. B.; Lian, S. C.; Weiss, E. A. Control of the redox activity of PbS quantum dots by tuning electrostatic interactions at the quantum dot/solvent interface. J. Am. Chem. Soc. 2016, 138, 8847–8854.

Nano Research
Pages 12608-12617
Cite this article:
Luo M-Y, Tang B, Liu A-A, et al. A robust and unique approach for tuning the energy level of Ag2Se quantum dots via “on-surface” manipulation of nitrogen-containing groups of surface-coordinated ligands. Nano Research, 2023, 16(11): 12608-12617. https://doi.org/10.1007/s12274-023-5688-9
Topics:

950

Views

6

Crossref

6

Web of Science

6

Scopus

1

CSCD

Altmetrics

Received: 05 January 2023
Revised: 23 March 2023
Accepted: 25 March 2023
Published: 19 April 2023
© Tsinghua University Press 2023
Return