AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Self-powered Internet of Things sensing node based on triboelectric nanogenerator for sustainable environmental monitoring

Yuhan Qin1,2Xianpeng Fu2Yuan Lin1,2Zheng Wang1,2Jie Cao2,3Chi Zhang1,2( )
School of Mechanical Engineering, Guangxi University, Nanning 530004, China
CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
Institute of Intelligent Flexible Mechatronics, Jiangsu University, Zhenjiang 212013, China
Show Author Information

Graphical Abstract

As a new mechanical energy harvesting technology, the triboelectric nanogenerator (TENG) has an excellent advantage in overcoming the limit of battery-powered of sensors. This work has provided a universal strategy for supplying Internet of Things (IoT) sensing nodes based on TENG and realized data monitoring and transmitting to cloud platform.

Abstract

The myriad sensing nodes in the Internet of Things (IoT) are mainly powered by battery, which has limited the lifespan and increased the maintenance costs. Herein, a self-powered IoT sensing node based on triboelectric nanogenerator (TENG) is proposed for the sustainable environmental monitoring. The wind powered TENG (W-TENG) is adopted in freestanding mode with the rabbit hair and six pairs of finger electrodes. With the energy management module, the weak electrical energy from W-TENG can be converted into a stable direct current (DC) 2.5 V voltage for the operation of the IoT sensing node. When the storage energy exceeds 4.4 V, the node can be activated, then the microprogrammed control unit (MCU) transmits the monitoring data. Thereafter, the monitoring data will be identified and relayed to the IoT cloud platform by narrowband IoT (NB-IoT) module. At a wind speed of 8.4 m/s, the node can realize the wireless monitoring and data transmission for temperature and atmosphere pressure every 30 s. This work has provided a universal strategy for sustainable IoT sensing nodes powered by environmental micro-nano mechanical energy and exhibited potential applications in IoT, big data, and environmental monitoring.

Electronic Supplementary Material

Video
12274_2023_5689_MOESM2_ESM.mp4
12274_2023_5689_MOESM3_ESM.mp4
Download File(s)
12274_2023_5689_MOESM1_ESM.pdf (1.5 MB)

References

[1]
Yang, Z. H.; Yue, Y. Z.; Yang, Y.; Peng, Y. F.; Wang, X. B.; Liu, W. J. Study and application on the architecture and key technologies for IOT. In Proceedings of 2011 International Conference on Multimedia Technology, Hangzhou, China, 2011, pp 747–751.
[2]
Shah, S. H.; Yaqoob, I. A survey: Internet of Things (IOT) technologies, applications and challenges. In Proceedings of 2016 IEEE Smart Energy Grid Engineering, Oshawa, Canada, 2016, pp 381–385.
[3]

Malche, T.; Maheshwary, P.; Kumar, R. Environmental monitoring system for smart city based on secure Internet of Things (IoT) architecture. Wireless Pers. Commun. 2019, 107, 2143–2172.

[4]

Ullo, S. L.; Sinha, G. R. Advances in smart environment monitoring systems using IoT and sensors. Sensors 2020, 20, 3113.

[5]

Muangprathub, J.; Boonnam, N.; Kajornkasirat, S.; Lekbangpong, N.; Wanichsombat, A.; Nillaor, P. IoT and agriculture data analysis for smart farm. Comput. Electron. Agric. 2019, 156, 467–474.

[6]

Gulati, K.; Boddu, R. S. K.; Kapila, D.; Bangare, S. L.; Chandnani, N.; Saravanan, G. A review paper on wireless sensor network techniques in Internet of Things (IoT). Mater. Today:Proc. 2022, 51, 161–165.

[7]

Hossein Motlagh, N.; Mohammadrezaei, M.; Hunt, J.; Zakeri, B. Internet of Things (IoT) and the energy sector. Energies 2020, 13, 494.

[8]

Elahi, H.; Munir, K.; Eugeni, M.; Atek, S.; Gaudenzi, P. Energy harvesting towards self-powered IoT devices. Energies 2020, 13, 5528.

[9]

Zhu, M. L.; Yi, Z. R.; Yang, B.; Lee, C. Making use of nanoenergy from human-nanogenerator and self-powered sensor enabled sustainable wireless IoT sensory systems. Nano Today 2021, 36, 101016.

[10]

Maharjan, P.; Bhatta, T.; Cho, H.; Hui, X.; Park, C.; Yoon, S.; Salauddin, M.; Rahman, M. T.; Rana, S. S. M.; Park, J. Y. A fully functional universal self-chargeable power module for portable/wearable electronics and self-powered IoT applications. Adv. Energy Mater. 2020, 10, 2002782.

[11]

Sun, J. F.; Zhang, L. J.; Li, Z. J.; Tang, Q.; Chen, J.; Huang, Y. Z.; Hu, C. G.; Guo, H. Y.; Peng, Y.; Wang, Z. L. A mobile and self-powered micro-flow pump based on triboelectricity driven electroosmosis. Adv. Mater. 2021, 33, 2102765.

[12]

Zhu, G.; Pan, C. F.; Guo, W. X.; Chen, C. Y.; Zhou, Y. S.; Yu, R. M.; Wang, Z. L. Triboelectric-generator-driven pulse electrodeposition for micropatterning. Nano Lett. 2012, 12, 4960–4965.

[13]

Wang, S. H.; Lin, L.; Xie, Y. N.; Jing, Q. S.; Niu, S. M.; Wang, Z. L. Sliding-triboelectric nanogenerators based on in-plane charge-separation mechanism. Nano Lett. 2013, 13, 2226–2233.

[14]

Yang, Y.; Zhou, Y. S.; Zhang, H. L.; Liu, Y.; Lee, S.; Wang, Z. L. A single-electrode based triboelectric nanogenerator as self-powered tracking system. Adv. Mater. 2013, 25, 6594–6601.

[15]

Wang, S. H.; Xie, Y. N.; Niu, S. M.; Lin, L.; Wang, Z. L. Freestanding triboelectric-layer-based nanogenerators for harvesting energy from a moving object or human motion in contact and non-contact modes. Adv. Mater. 2014, 26, 2818–2824.

[16]

Chen, C.; Wen, Z.; Wei, A. M.; Xie, X. K.; Zhai, N. N.; Wei, X. L.; Peng, M. F.; Liu, Y. N.; Sun, X. H.; Yeow, J. T. W. Self-powered on-line ion concentration monitor in water transportation driven by triboelectric nanogenerator. Nano Energy 2019, 62, 442–448.

[17]

Zhang, C.; Tang, W.; Han, C. B.; Fan, F. R.; Wang, Z. L. Theoretical comparison, equivalent transformation, and conjunction operations of electromagnetic induction generator and triboelectric nanogenerator for harvesting mechanical energy. Adv. Mater. 2014, 26, 3580–3591.

[18]

Zi, Y. L.; Guo, H. Y.; Wen, Z.; Yeh, M. H.; Hu, C. G.; Wang, Z. L. Harvesting low-frequency (< 5 Hz) irregular mechanical energy: A possible killer application of triboelectric nanogenerator. ACS Nano 2016, 10, 4797–4805.

[19]

Fan, F. R.; Tian, Z. Q.; Wang, Z. L. Flexible triboelectric generator. Nano Energy 2012, 1, 328–334.

[20]

Xi, F. B.; Pang, Y. K.; Liu, G. X.; Wang, S. W.; Li, W.; Zhang, C.; Wang, Z. L. Self-powered intelligent buoy system by water wave energy for sustainable and autonomous wireless sensing and data transmission. Nano Energy 2019, 61, 1–9.

[21]

Liang, X.; Jiang, T.; Feng, Y. W.; Lu, P. J.; An, J.; Wang, Z. L. Triboelectric nanogenerator network integrated with charge excitation circuit for effective water wave energy harvesting. Adv. Energy Mater. 2020, 10, 2002123.

[22]

Fu, X. P.; Xu, S. H.; Gao, Y. Y.; Zhang, X. H.; Liu, G. X.; Zhou, H.; Lv, Y.; Zhang, C.; Wang, Z. L. Breeze-wind-energy-powered autonomous wireless anemometer based on rolling contact-electrification. ACS Energy Lett. 2021, 6, 2343–2350.

[23]

Liu, D.; Li, C. Y.; Chen, P. F.; Zhao, X.; Tang, W.; Wang, Z. L. Sustainable long-term and wide-area environment monitoring network based on distributed self-powered wireless sensing nodes. Adv. Energy Mater. 2023, 13, 2202691.

[24]

Han, J. J.; Feng, Y. W.; Chen, P. F.; Liang, X.; Pang, H.; Jiang, T.; Wang, Z. L. Wind-driven soft-contact rotary triboelectric nanogenerator based on rabbit fur with high performance and durability for smart farming. Adv. Funct. Mater. 2022, 32, 2108580.

[25]

Xu, C. Q.; Fu, X. P.; Li, C. Y.; Liu, G. X.; Gao, Y. Y.; Qi, Y. C.; Bu, T. Z.; Chen, Y. F.; Wang, Z. L.; Zhang, C. Raindrop energy-powered autonomous wireless hyetometer based on liquid–solid contact electrification. Microsyst. Nanoeng. 2022, 8, 30.

[26]

Zhang, X. H.; Zhao, J. Q.; Fu, X. P.; Lin, Y.; Qi, Y. C.; Zhou, H.; Zhang, C. Broadband vibration energy powered autonomous wireless frequency monitoring system based on triboelectric nanogenerators. Nano Energy 2022, 98, 107209.

[27]

Lin, Y.; Qi, Y. C.; Wang, J. Q.; Liu, G. X.; Wang, Z. Z.; Zhao, J. Q.; Lv, Y.; Zhang, Z.; Tian, N.; Wang, M. B. et al. Self-powered and autonomous vibrational wake-up system based on triboelectric nanogenerators and MEMS switch. Sensors 2022, 22, 3752.

[28]

Qi, Y. C.; Liu, G. X.; Kuang, Y.; Wang, L.; Zeng, J. H.; Lin, Y.; Zhou, H.; Zhu, M. L.; Zhang, C. Frequency band broadening and charge density enhancement of a vibrational triboelectric nanogenerator with two stoppers. Nano Energy 2022, 99, 107427.

[29]

Chen, X. P.; Li, J. Y.; Liu, Y. N.; Jiang, J. X.; Zhao, C.; Zhao, C. Z.; Lim, E. G.; Sun, X. H.; Wen, Z. An integrated self-powered real-time pedometer system with ultrafast response and high accuracy. ACS Appl. Mater. Interfaces 2021, 13, 61789–61798.

[30]

Sun, J. F.; Zhang, L. J.; Hui, X. D.; Huang, Y. Z.; Chen, J.; Hu, C. G.; Guo, H. Y.; Qi, S.; Wang, Z. L. Self-powered in-phase sensing and regulating mechanical system enabled by nanogenerator and electrorheological fluid. Adv. Funct. Mater. 2023, 33, 2212248.

[31]

Hui, X. D.; Li, Z. J.; Tang, L. R.; Sun, J. F.; Hou, X. Z.; Chen, J.; Peng, Y.; Wu, Z. Y.; Guo, H. Y. A self-powered, highly embedded and sensitive tribo-label-sensor for the fast and stable label printer. Nano-Micro Lett. 2023, 15, 27.

[32]

Harmon, W.; Bamgboje, D.; Guo, H. Y.; Hu, T. S.; Wang, Z. L. Self-driven power management system for triboelectric nanogenerators. Nano Energy 2020, 71, 104642.

[33]

Wang, F.; Tian, J. W.; Ding, Y. F.; Shi, Y. X.; Tao, X. L.; Wang, X. L.; Yang, Y.; Chen, X. Y.; Wang, Z. L. A universal managing circuit with stabilized voltage for maintaining safe operation of self-powered electronics system. iScience 2021, 24, 102502.

[34]

Song, Y.; Min, J. H.; Yu, Y.; Wang, H. B.; Yang, Y. R.; Zhang, H. X.; Gao, W. Wireless battery-free wearable sweat sensor powered by human motion. Sci. Adv. 2020, 6, eaay9842.

[35]

Zou, H. Y.; Zhang, Y.; Guo, L. T.; Wang, P. H.; He, X.; Dai, G. Z.; Zheng, H. W.; Chen, C. Y.; Wang, A. C.; Xu, C. et al. Quantifying the triboelectric series. Nat. Commun. 2019, 10, 1427.

[36]

Xi, F. B.; Pang, Y. K.; Li, W.; Jiang, T.; Zhang, L. M.; Guo, T.; Liu, G. X.; Zhang, C.; Wang, Z. L. Universal power management strategy for triboelectric nanogenerator. Nano Energy 2017, 37, 168–176.

Nano Research
Pages 11878-11884
Cite this article:
Qin Y, Fu X, Lin Y, et al. Self-powered Internet of Things sensing node based on triboelectric nanogenerator for sustainable environmental monitoring. Nano Research, 2023, 16(9): 11878-11884. https://doi.org/10.1007/s12274-023-5689-8
Topics:
Part of a topical collection:

1492

Views

28

Crossref

23

Web of Science

24

Scopus

0

CSCD

Altmetrics

Received: 31 January 2023
Revised: 27 February 2023
Accepted: 26 March 2023
Published: 09 May 2023
© Tsinghua University Press 2023
Return