Article Link
Collect
Submit Manuscript
Show Outline
Outline
Graphical Abstract
Abstract
Keywords
Electronic Supplementary Material
References
Show full outline
Hide outline
Research Article

Pillar effect boosting the electrochemical stability of Prussian blue-polypyrrole for potassium ion batteries

Mengmeng Zhou1Xiaomeng Tian1Ying Sun1()Xiaojun He2Hui Li3Tianyi Ma3Qin Zhao1()Jieshan Qiu4
Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials of Liaoning Province, Institute of Clean Energy Chemistry, College of Chemistry, Liaoning University, Shenyang 110036, China
Anhui Key Laboratory of Coal Clean Conversion and High Valued Utilization, Key Laboratory of Metallurgical Emission Reduction & Resources Recycling Ministry of Education, School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan 243002, China
School of Science, RMIT University, Melbourne VIC 3000, Australia
State Key Laboratory of Chemical Resource Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
Show Author Information

Graphical Abstract

View original image Download original image
High stable and high conductive Prussian blue-polypyrrole (PB-PPY) composite was prepared by reducing co-precipitation reaction rate. K ions working as pillars can relieve the structural stress of Prussian blue during cycling process and increase the cycling performance of PB-PPY in potassium ion batteries.

Abstract

Due to the high theoretical capacity and electrode potential, Prussian blue is regarded as promising cathode material for potassium ion batteries. However, inferior structural stability, poor electronic conductivity, and ambiguous energy storage mechanism have limited the application of Prussian blue materials. Herein, a highly stable Prussian blue-polypyrrole (PB-PPY) composite has been prepared by a facile one-step method. PB-PPY displays higher discharging capacity, better rate capacity, and longer cycling lifespan than that of pure Prussian blue in potassium ion batteries. The superior electrochemical performance can be attributed to the unique synthesis strategy to reduce the content of vacancies and crystal water in Prussian blue and enhance the conductivity. Furthermore, partial K ions have been evidenced that could remain in the Prussian blue framework, which contributes the long-term cycling stability. The K ions in the framework play the role of “pillars” to support the framework of Prussian blue and relieve the structural stress during the intercalation and de-intercalation of K ions. This work will reveal a new energy storage mechanism of Prussian blue and promote the design of high stability Prussian blue in the future.

Electronic Supplementary Material

Download File(s)
12274_2022_5692_MOESM1_ESM.pdf (1.9 MB)

References

[1]

Norris, C.; Parmananda, M.; Roberts, S. A.; Mukherjee, P. P. Probing the influence of multiscale heterogeneity on effective properties of graphite electrodes. ACS Appl. Mater. Interfaces 2022, 14, 943–953.

[2]

Ely, T. O.; Kamzabek, D.; Chakraborty, D. Batteries safety: Recent progress and current challenges. Front. Energy Res. 2019, 7, 71.

[3]

Cai, W. L.; Yan, C.; Yao, Y. X.; Xu, L.; Chen, X. R.; Huang, J. Q.; Zhang, Q. The boundary of lithium plating in graphite electrode for safe lithium-ion batteries. Angew. Chem., Int. Ed. 2021, 60, 13007–13012.

[4]

Zhang, W. L.; Yin, J.; Wang, W. X.; Bayhan, Z.; Alshareef, H. N. Status of rechargeable potassium batteries. Nano Energy 2021, 83, 105792.

[5]

Yao, Q. Q.; Zhu, C. B. Advanced post-potassium-ion batteries as emerging potassium-based alternatives for energy storage. Adv. Funct. Mater. 2020, 30, 2005209.

[6]

Tan, H. T.; Feng, Y. Z.; Rui, X. H.; Yu, Y.; Huang, S. M. Metal chalcogenides: Paving the way for high-performance sodium/potassium-ion batteries. Small Methods 2020, 4, 1900563.

[7]

Jian, Z. L.; Xing, Z. Y.; Bommier, C.; Li, Z. F.; Ji, X. L. Hard carbon microspheres: Potassium-ion anode versus sodium-ion anode. Adv. Energy Mater. 2016, 6, 1501874.

[8]

Min, X.; Xiao, J.; Fang, M. H.; Wang, W.; Zhao, Y. J.; Liu, Y. G.; Abdelkader, A. M.; Xi, K.; Kumar, R. V.; Huang, Z. H. Potassium-ion batteries: Outlook on present and future technologies. Energy Environ. Sci. 2021, 14, 2186–2243.

[9]

Liu, W.; Liu, P. C.; Mitlin, D. Review of emerging concepts in SEI analysis and artificial SEI membranes for lithium, sodium, and potassium metal battery anodes. Adv. Energy Mater. 2020, 10, 2002297.

[10]

Hosaka, T.; Kubota, K.; Hameed, A. S.; Komaba, S. Research development on K-ion batteries. Chem. Rev. 2020, 120, 6358–6466.

[11]

Li, W. J.; Han, C.; Cheng, G.; Chou, S. L.; Liu, H. K.; Dou, S. X. Chemical properties, structural properties, and energy storage applications of Prussian blue analogues. Small 2019, 15, 1900470.

[12]

Zhang, C. L.; Xu, Y.; Zhou, M.; Liang, L. Y.; Dong, H. S.; Wu, M. H.; Yang, Y.; Lei, Y. Potassium prussian blue nanoparticles: A low-cost cathode material for potassium-ion batteries. Adv. Funct. Mater. 2017, 27, 1604307.

[13]

Zhao, S. Q.; Guo, Z. Q.; Yan, K.; Guo, X.; Wan, S. W.; He, F. R.; Sun, B.; Wang, G. X. The rise of prussian blue analogs: Challenges and opportunities for high-performance cathode materials in potassium-ion batteries. Small Struct. 2021, 2, 2000054.

[14]

Bie, X. F.; Kubota, K.; Hosaka, T.; Chihara, K.; Komaba, S. A novel K-ion battery: Hexacyanoferrate(II)/graphite cell. J. Mater. Chem. A 2017, 5, 4325–4330.

[15]

Zhou, A. J.; Cheng, W. J.; Wang, W.; Zhao, Q.; Xie, J.; Zhang, W. X.; Gao, H. C.; Xue, L. G.; Li, J. Z. Hexacyanoferrate-type prussian blue analogs: Principles and advances toward high-performance sodium and potassium ion batteries. Adv. Energy Mater. 2020, 11, 2000943.

[16]

Qian, J. F.; Wu, C.; Cao, Y. L.; Ma, Z. F.; Huang, Y. H.; Ai, X. P.; Yang, H. X. Prussian blue cathode materials for sodium-ion batteries and other ion batteries. Adv. Energy Mater. 2018, 8, 1702619.

[17]

Peng, J.; Zhang, W.; Liu, Q. N.; Wang, J. Z.; Chou, S. L.; Liu, H. K.; Dou, S. X. Prussian blue analogues for sodium-ion batteries: Past, present, and future. Adv. Mater. 2022, 34, 2108384.

[18]

Liu, Q. N.; Hu, Z.; Chen, M. Z.; Zou, C.; Jin, H. L.; Wang, S.; Chou, S. L.; Liu, Y.; Dou, S. X. The cathode choice for commercialization of sodium-ion batteries: Layered transition metal oxides versus Prussian blue analogs. Adv. Funct. Mater. 2020, 30, 1909530.

[19]

Peng, F. W.; Yu, L.; Gao, P. Y.; Liao, X. Z.; Wen, J. G.; He, Y. S.; Tan, G. Q.; Ren, Y.; Ma, Z. F. Highly crystalline sodium manganese ferrocyanide microcubes for advanced sodium ion battery cathodes. J. Mater. Chem. A 2019, 7, 22248–22256.

[20]

He, G.; Nazar, L. F. Crystallite size control of Prussian white analogues for nonaqueous potassium-ion batteries. ACS Energy Lett. 2017, 2, 1122–1127.

[21]

Li, C.; Wang, X. S.; Deng, W. J.; Liu, C. Y.; Chen, J. T.; Li, R.; Xue, M. Q. Size engineering and crystallinity control enable high-capacity aqueous potassium-ion storage of Prussian white analogues. ChemElectroChem 2018, 5, 3887–3892.

[22]

Xue, Q.; Li, L.; Huang, Y. X.; Huang, R. L.; Wu, F.; Chen, R. J. Polypyrrole-modified Prussian blue cathode material for potassium ion batteries via in situ polymerization coating. ACS Appl. Mater. Interfaces 2019, 11, 22339–22345.

[23]

Sun, Y. P.; Liu, C. L.; Xie, J.; Zhuang, D. G.; Zheng, W. Q.; Zhao, X. B. Potassium manganese hexacyanoferrate/graphene as a high-performance cathode for potassium-ion batteries. New J. Chem. 2019, 43, 11618–11625.

[24]

Wang, J. M.; Wang, B. B.; Liu, X. J.; Bai, J. T.; Wang, H.; Wang, G. Prussian blue analogs (PBA) derived porous bimetal (Mn, Fe) selenide with carbon nanotubes as anode materials for sodium and potassium ion batteries. Chem. Eng. J. 2020, 382, 123050.

[25]

Liao, J. Y.; Hu, Q.; Zou, B. K.; Xiang, J. X.; Chen, C. H. The role of potassium ions in iron hexacyanoferrate as a cathode material for hybrid ion batteries. Electrochim. Acta 2016, 220, 114–121.

[26]

Wu, X. Y.; Wu, C. H.; Wei, C. X.; Hu, L.; Qian, J. F.; Cao, Y. L.; Ai, X. P.; Wang, J. L.; Yang, H. X. Highly crystallized Na2CoFe(CN)6 with suppressed lattice defects as superior cathode material for sodium-ion batteries. ACS Appl. Mater. Interfaces 2016, 8, 5393–5399.

[27]

Ma, X. H.; Wei, Y. Y.; Wu, Y. D.; Wang, J.; Jia, W.; Zhou, J. H.; Zi, Z. F.; Dai, J. M. High crystalline Na2Ni[Fe(CN)6] particles for a high-stability and low-temperature sodium-ion batteries cathode. Electrochim. Acta 2019, 297, 392–397.

[28]

Qin, M. S.; Ren, W. H.; Jiang, R. X.; Li, Q.; Yao, X. H.; Wang, S. Q.; You, Y.; Mai, L. Q. Highly crystallized prussian blue with enhanced kinetics for highly efficient sodium storage. ACS Appl. Mater. Interfaces 2021, 13, 3999–4007.

[29]

Chong, S. K.; Chen, Y. Z.; Zheng, Y.; Tan, Q.; Shu, C. Y.; Liu, Y. N.; Guo, Z. P. Potassium ferrous ferricyanide nanoparticles as a high capacity and ultralong life cathode material for nonaqueous potassium-ion batteries. J. Mater. Chem. A 2017, 5, 22465–22471.

[30]

Ren, W. H.; Chen, X. J.; Zhao, C. Ultrafast aqueous potassium-ion batteries cathode for stable intermittent grid-scale energy storage. Adv. Energy Mater. 2018, 8, 1801413.

[31]

Sun, F. F.; Li, W. H.; Huang, Z. H.; Sun, W. P.; Dou, Y. H.; Yuan, D.; Jia, B. H.; Ma, T. Y. Pulse-potential electrochemistry to boost real-life application of pseudocapacitive dual-doped polypyrrole. SmartMat 2022, 3, 644–656.

[32]

Li, X. J.; Wang, X. K.; Liu, G.; Sui, X. Y.; Wu, Q. F.; Wang, X. E.; Lv, X. L.; Xie, E. Q.; Zhang, Z. X. 2.5 V “water in salt” aqueous micro-supercapacitors based on polypyrrole-coated NiCo layered double hydroxides. Chem. Eng. J. 2023, 452, 139140.

[33]

Lu, Y. H.; Wang, L.; Cheng, J. G.; Goodenough, J. B. Prussian blue: A new framework of electrode materials for sodium batteries. Chem. Commun. 2012, 48, 6544–6546.

[34]

He, B.; Man, P.; Zhang, Q. C.; Wang, C.; Zhou, Z. Y.; Li, C. W.; Wei, L.; Yao, Y. G. Conversion synthesis of self-standing potassium zinc hexacyanoferrate arrays as cathodes for high-voltage flexible aqueous rechargeable sodium-ion batteries. Small 2019, 15, 1905115.

[35]

Huang, H. J.; Xia, X.; Yun, J. W.; Huang, C.; Li, D. L.; Chen, B. B.; Yang, Z. H.; Zhang, W. X. Interfacial engineering of hydrated vanadate to promote the fast and highly reversible H+/Zn2+ co-insertion processes for high-performance aqueous rechargeable batteries. Energy Storage Mater. 2022, 52, 473–484.

Nano Research
Pages 6326-6333
Cite this article:
Zhou M, Tian X, Sun Y, et al. Pillar effect boosting the electrochemical stability of Prussian blue-polypyrrole for potassium ion batteries. Nano Research, 2023, 16(5): 6326-6333. https://doi.org/10.1007/s12274-023-5692-0
Topics:
Part of a topical collection:
Metrics & Citations  
Article History
Copyright
Return