AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

The development of A-DA’D-A type nonfullerene acceptors containing non-halogenated end groups

Hongxing Liu1,2Tingting Dai2Jialing Zhou2Helin Wang2( )Qing Guo1Qiang Guo1Erjun Zhou1,2( )
Henan Institute of Advanced Technology, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450003, China
National Center for Nanoscience and Technology, Beijing 100190, China
Show Author Information

Graphical Abstract

In this review, we systematically summarize the recent development of A-DA’D-A type non-fullerene acceptors containing non-halogenated end groups (NHEG) and the impact of different end groups on the optoelectronic properties as well as the photovoltaic performance.

Abstract

Compared with perovskite solar cells and silicon solar cells, the excessive voltage loss (Vloss) becomes a stubborn stone that seriously hinders the further improvement of organic photovoltaic (OPV). Thus, many researchers focus on finding an effective material system to achieve high-performance OPVs with low Vloss. In recent 5 years, acceptor-donor-acceptor’-donor-acceptor (A-DA’D-A) type non-fullerene acceptors (NFAs) have attracted great attention because of their promising photovoltaic performance. Among them, A-DA’D-A type NFAs containing non-halogenated end group (NHEG) exhibit the large potential to achieve high open-circuit voltage (VOC) for the state-of-the-art OPVs, because of high-lying molecular energy levels and decreasing Vloss. In this review, we systematically summarize the recent development of A-DA’D-A type NHEG-NFAs and the impact of different NHEGs on the optoelectronic properties as well as the photovoltaic performance. In addition, we especially analyze the Vloss of NHEG-NFAs in the binary and ternary OPV devices. At last, we provide perspectives on the further molecular design and future challenges for this kind of materials as well as suggested solutions.

References

[1]

Tang, A. L.; Zhan, C. L.; Yao, J. N.; Zhou, E. J. Design of diketopyrrolopyrrole (DPP)-based small molecules for organic-solar-cell applications. Adv. Mater. 2017, 29, 1600013.

[2]

Fu, H. T.; Wang, Z. H.; Sun, Y. M. Polymer donors for high-performance non-fullerene organic solar cells. Angew. Chem., Int. Ed. 2019, 58, 4442–4453.

[3]

Yan, C. Q.; Barlow, S.; Wang, Z. H.; Yan, H.; Jen, A. K. Y.; Marder, S. R.; Zhan, X. W. Non-fullerene acceptors for organic solar cells. Nat. Rev. Mater. 2018, 3, 18003.

[4]

Cui, Y.; Xu, Y.; Yao, H. F.; Bi, P. Q.; Hong, L.; Zhang, J. Q.; Zu, Y. F.; Zhang, T.; Qin, J. Z.; Ren, J. Z. et al. Single-junction organic photovoltaic cell with 19% efficiency. Adv. Mater. 2021, 33, 2102420.

[5]

Gao, W.; Qi, F.; Peng, Z. X.; Lin, F. R.; Jiang, K.; Zhong, C.; Kaminsky, W.; Guan, Z. Q.; Lee, C. S.; Marks, T. J. et al. Achieving 19% power conversion efficiency in planar-mixed heterojunction organic solar cells using a pseudosymmetric electron acceptor. Adv. Mater. 2022, 34, 2202089.

[6]

Wei, Y. N.; Chen, Z. H.; Lu, G. Y.; Yu, N.; Li, C. Q.; Gao, J. H.; Gu, X. B.; Hao, X. T.; Lu, G. H.; Tang, Z. et al. Binary organic solar cells breaking 19% via manipulating the vertical component distribution. Adv. Mater. 2022, 34, 2204718.

[7]

Zhu, L.; Zhang, M.; Xu, J. Q.; Li, C.; Yan, J.; Zhou, G. Q.; Zhong, W. K.; Hao, T. Y.; Song, J. L.; Xue, X. N. et al. Single-junction organic solar cells with over 19% efficiency enabled by a refined double-fibril network morphology. Nat. Mater. 2022, 21, 656–663.

[8]

Li, D. H.; Deng, N.; Fu, Y. W.; Guo, C. H.; Zhou, B. J.; Wang, L.; Zhou, J.; Liu, D.; Li, W.; Wang, K. et al. Fibrillization of non-fullerene acceptors enables 19% efficiency pseudo-bulk heterojunction organic solar cells. Adv. Mater. 2023, 35, 2208211.

[9]

He, D.; Zhao, F. W.; Wang, C. R.; Lin, Y. Z. Non-radiative recombination energy losses in non-fullerene organic solar cells. Adv. Funct. Mater. 2022, 32, 2111855.

[10]

Liu, J.; Chen, S. S.; Qian, D. P.; Gautam, B.; Yang, G. F.; Zhao, J. B.; Bergqvist, J.; Zhang, F. L.; Ma, W.; Ade, H. et al. Fast charge separation in a non-fullerene organic solar cell with a small driving force. Nat. Energy 2016, 1, 16089.

[11]

Wang, X.; Fan, Y. P.; Wang, L.; Chen, C.; Li, Z. P.; Liu, R. R.; Meng, H. G.; Shao, Z. P.; Du, X. F.; Zhang, H. R. et al. Perovskite solution aging: What happened and how to inhibit. Chem 2020, 6, 1369–1378.

[12]

Chen, C.; Wang, X.; Li, Z. P.; Du, X. F.; Shao, Z. P.; Sun, X. H.; Liu, D. C.; Gao, C. Y.; Hao, L. Z.; Zhao, Q. Q. et al. Polyacrylonitrile-coordinated perovskite solar cell with open-circuit voltage exceeding 1.23 V. Angew. Chem., Int. Ed. 2022, 61, e202113932.

[13]

Sun, X. H.; Shao, Z. P.; Li, Z. P.; Liu, D. C.; Gao, C. Y.; Chen, C.; Zhang, B. Q.; Hao, L. Z.; Zhao, Q. Q.; Li, Y. M. et al. Highly efficient CsPbI3/Cs1-xDMAxPbI3 bulk heterojunction perovskite solar cell. Joule 2022, 6, 850–860.

[14]

Ding, Y. J.; Guo, Q.; Geng, Y. F.; Dai, Z.; Wang, Z. B.; Chen, Z. W.; Guo, Q.; Zheng, Z.; Li, Y. F.; Zhou, E. J. A low-cost hole transport layer enables CsPbI2Br single-junction and tandem perovskite solar cells with record efficiencies of 17.8% and 21.4%. Nano Today 2022, 46, 101586.

[15]

Zhang, B. Q.; Chen, C.; Wang, X. Z.; Du, X. F.; Liu, D. C.; Sun, X. H.; Li, Z. P.; Hao, L. Z.; Gao, C. Y.; Li, Y. M. et al. A multifunctional polymer as an interfacial layer for efficient and stable perovskite solar cells. Angew. Chem., Int. Ed. 2023, 62, e202213478.

[16]

Wang, J.; Chen, H. B.; Xu, X. Y.; Ma, Z. F.; Zhang, Z.; Li, C. X.; Yang, Y.; Wang, J.; Zhao, Y.; Zhang, M. T. et al. An acceptor with an asymmetric and extended conjugated backbone for high-efficiency organic solar cells with low nonradiative energy loss. J. Mater. Chem. A 2022, 10, 16714–16721.

[17]

Menke, S. M.; Ran, N. A.; Bazan, G. C.; Friend, R. H. Understanding energy loss in organic solar cells: Toward a new efficiency regime. Joule 2018, 2, 25–35.

[18]

Liang, Y. Y.; Xu, Z.; Xia, J. B.; Tsai, S. T.; Wu, Y.; Li, G.; Ray, C.; Yu, L. P. For the bright future-bulk heterojunction polymer solar cells with power conversion efficiency of 7.4%. Adv. Mater. 2010, 22, E135–E138.

[19]

Price, S. C.; Stuart, A. C.; Yang, L. Q.; Zhou, H. X.; You, W. Fluorine substituted conjugated polymer of medium band gap yields 7% efficiency in polymer-fullerene solar cells. J. Am. Chem. Soc. 2011, 133, 4625–4631.

[20]

Liao, S. H.; Jhuo, H. J.; Cheng, Y. S.; Chen, S. A. Fullerene derivative-doped zinc oxide nanofilm as the cathode of inverted polymer solar cells with low-bandgap polymer (PTB7-Th) for high performance. Adv. Mater. 2013, 25, 4766–4771.

[21]

Lin, Y. Z.; Li, Y. F.; Zhan, X. W. Small molecule semiconductors for high-efficiency organic photovoltaics. Chem. Soc. Rev. 2012, 41, 4245–4272.

[22]

Zhang, F. L.; Inganäs, O.; Zhou, Y. H.; Vandewal, K. Development of polymer-fullerene solar cells. Nat. Sci. Rev. 2016, 3, 222–239.

[23]

Zhao, J. B.; Li, Y. K.; Yang, G. F.; Jiang, K.; Lin, H. R.; Ade, H.; Ma, W.; Yan, H. Efficient organic solar cells processed from hydrocarbon solvents. Nat. Energy 2016, 1, 15027.

[24]

Lin, Y. Z.; Wang, J. Y.; Zhang, Z. G.; Bai, H. T.; Li, Y. F.; Zhu, D. B.; Zhan, X. W. An electron acceptor challenging fullerenes for efficient polymer solar cells. Adv. Mater. 2015, 27, 1170–1174.

[25]

Liu, F. C.; Hou, T. Y.; Xu, X. F.; Sun, L. Y.; Zhou, J. W.; Zhao, X. G.; Zhang, S. M. Recent advances in nonfullerene acceptors for organic solar cells. Macromol. Rapid Commun. 2018, 39, 1700555.

[26]

Wei, Q. Y.; Liu, W.; Leclerc, M.; Yuan, J.; Chen, H. G.; Zou, Y. P. A-DA’D-A non-fullerene acceptors for high-performance organic solar cells. Sci. China Chem. 2020, 63, 1352–1366.

[27]

Yuan, J.; Zhang, Y. Q.; Zhou, L. Y.; Zhang, G. C.; Yip, H. L.; Lau, T. K.; Lu, X. H.; Zhu, C.; Peng, H. J.; Johnson, P. A. et al. Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core. Joule 2019, 3, 1140–1151.

[28]

Cui, Y.; Yao, H. F.; Zhang, J. Q.; Xian, K. H.; Zhang, T.; Hong, L.; Wang, Y. M.; Xu, Y.; Ma, K. Q.; An, C. B. et al. Single-junction organic photovoltaic cells with approaching 18% efficiency. Adv. Mater. 2020, 32, 1908205.

[29]

Zhu, C.; Yuan, J.; Cai, F. F.; Meng, L.; Zhang, H. T.; Chen, H. G.; Li, J.; Qiu, B. B.; Peng, H. J.; Chen, S. S. et al. Tuning the electron-deficient core of a non-fullerene acceptor to achieve over 17% efficiency in a single-junction organic solar cell. Energy Environ. Sci. 2020, 13, 2459–2466.

[30]

Cai, Y. H.; Li, Y.; Wang, R.; Wu, H. B.; Chen, Z. H.; Zhang, J.; Ma, Z. F.; Hao, X. T.; Zhao, Y.; Zhang, C. F. et al. A well-mixed phase formed by two compatible non-fullerene acceptors enables ternary organic solar cells with efficiency over 18.6%. Adv. Mater. 2021, 33, 2101733.

[31]

Liu, Q. S.; Jiang, Y. F.; Jin, K; Qin, J. Q. ; Xu, J. G.; Li, W. T.; Xiong, J.; Liu, J. F.; Xiao, Z.; Sun, K. et al. 18% Efficiency organic solar cells. Sci. Bull. 2020, 65, 272–275.

[32]

Jin, K.; Xiao, Z.; Ding, L. M. 18.69% PCE from organic solar cells. J. Semicond. 2021, 42, 060502.

[33]

Li, S. S.; Ye, L.; Zhao, W. C.; Zhang, S. Q.; Mukherjee, S.; Ade, H.; Hou, J. H. Energy-level modulation of small-molecule electron acceptors to achieve over 12% efficiency in polymer solar cells. Adv. Mater. 2016, 28, 9423–9429.

[34]

Lin, Y. Z.; He, Q.; Zhao, F. W.; Huo, L. J.; Mai, J.; Lu, X. H.; Su, C. J.; Li, T. F.; Wang, J. Y.; Zhu, J. S. et al. A facile planar fused-ring electron acceptor for as-cast polymer solar cells with 8.71% efficiency. J. Am. Chem. Soc. 2016, 138, 2973–2976.

[35]

Zhang, Y. D.; Ji, Y. T.; Zhang, Y. Y.; Zhang, W. Q.; Bai, H. L.; Du, M. Z.; Wu, H.; Guo, Q.; Zhou, E. J. Recent progress of Y6-derived asymmetric fused ring electron acceptors. Adv. Funct. Mater. 2022, 32, 2205115.

[36]

Li, S. X.; Li, C. Z.; Shi, M. M.; Chen, H. Z. New phase for organic solar cell research: Emergence of Y-series electron acceptors and their perspectives. ACS Energy Lett. 2020, 5, 1554–1567.

[37]

Liu, W.; Xu, X.; Yuan, J.; Leclerc, M.; Zou, Y. P.; Li, Y. F. Low-bandgap non-fullerene acceptors enabling high-performance organic solar cells. ACS Energy Lett. 2021, 6, 598–608.

[38]

Yu, H.; Ma, R. J.; Xiao, Y. Q.; Zhang, J. Q.; Liu, T.; Luo, Z. H.; Chen, Y. Z.; Bai, F. J.; Lu, X. H.; Yan, H. et al. Improved organic solar cell efficiency based on the regulation of an alkyl chain on chlorinated non-fullerene acceptors. Mater. Chem. Front. 2020, 4, 2428–2434.

[39]

Li, T. F.; Wang, K.; Cai, G. L.; Li, Y. W.; Liu, H.; Jia, Y. X.; Zhang, Z. Z.; Lu, X. H.; Yang, Y.; Lin, Y. Z. Asymmetric glycolated substitution for enhanced permittivity and ecocompatibility of high-performance photovoltaic electron acceptor. JACS Au 2021, 1, 1733–1742.

[40]

Jia, Z. R.; Qin, S. C.; Meng, L.; Ma, Q.; Angunawela, I.; Zhang, J. Y.; Li, X. J.; He, Y. K.; Lai, W. B.; Li, N. et al. High performance tandem organic solar cells via a strongly infrared-absorbing narrow bandgap acceptor. Nat. Commun. 2021, 12, 178.

[41]

Feng, L. L.; Yuan, J.; Zhang, Z. Z.; Peng, H. J.; Zhang, Z. G.; Xu, S. T.; Liu, Y.; Li, Y. F.; Zou, Y. P. Thieno[3,2-b]pyrrolo-fused pentacyclic benzotriazole-based acceptor for efficient organic photovoltaics. ACS Appl. Mater. Interfaces 2017, 9, 31985–31992.

[42]

Liu, K. K.; Xu, X. P.; Wang, J. L.; Zhang, C.; Ge, G. Y.; Zhuang, F. D.; Zhang, H. J.; Yang, C.; Peng, Q.; Pei, J. Achieving high-performance non-halogenated nonfullerene acceptor-based organic solar cells with 13.7% efficiency via a synergistic strategy of an indacenodithieno[3,2-b]selenophene core unit and non-halogenated thiophene-based terminal group. J. Mater. Chem. A 2019, 7, 24389–24399.

[43]

Zhou, J.; He, Z.; Sun, Y.; Tang, A.; Guo, Q.; Zhou, E. Organic photovoltaic cells based on nonhalogenated polymer donors and nonhalogenated A-DA’D-A-type nonfullerene acceptors with high VOC and low nonradiative voltage loss. ACS Appl. Mater. Interfaces 2022, 14, 41296–41303.

[44]

Zhan, L. L.; Li, S. X.; Lau, T. K.; Cui, Y.; Lu, X. H.; Shi, M. M.; Li, C. Z.; Li, H. Y.; Hou, J. H.; Chen, H. Z. Over 17% efficiency ternary organic solar cells enabled by two non-fullerene acceptors working in an alloy-like model. Energy Environ. Sci. 2020, 13, 635–645.

[45]

Pan, J. X.; Shi, Y. N.; Yu, J. W.; Zhang, H.; Liu, Y. N.; Zhang, J. Q.; Gao, F.; Yu, X.; Lu, K.; Wei, Z. X. π-extended nonfullerene acceptors for efficient organic solar cells with a high open-circuit voltage of 0.94 V and a low energy loss of 0.49 eV. ACS Appl. Mater. Interfaces 2021, 13, 22531–22539.

[46]

Ma, X. L.; Luo, M.; Gao, W.; Yuan, J.; An, Q. S.; Zhang, M.; Hu, Z. H.; Gao, J. H.; Wang, J. X.; Zou, Y. P. et al. Achieving 14.11% efficiency of ternary polymer solar cells by simultaneously optimizing photon harvesting and exciton distribution. J. Mater. Chem. A 2019, 7, 7843–7851.

[47]

Yin, Y. L.; Zhan, L. L.; Liu, M.; Yang, C. Q.; Guo, F. Y.; Liu, Y.; Gao, S. Y.; Zhao, L. C.; Chen, H. Z.; Zhang, Y. Boosting photovoltaic performance of ternary organic solar cells by integrating a multi-functional guest acceptor. Nano Energy 2021, 90, 106538.

[48]

Zhang, Y. H.; Cai, G. L.; Li, Y. W.; Zhang, Z. Z.; Li, T. F.; Zuo, X.; Lu, X. H.; Lin, Y. Z. An electron acceptor analogue for lowering trap density in organic solar cells. Adv. Mater. 2021, 33, 2008134.

[49]

Gao, X.; Ma, X. L.; Liu, Z. F.; Gao, J. X.; Qi, Q. C.; Yu, Y.; Gao, Y.; Ma, Z. F.; Ye, L.; Min, J. et al. Novel third components with (Thio)barbituric acid as the end groups improving the efficiency of ternary solar cells. ACS Appl. Mater. Interfaces 2022, 14, 23701–23708.

[50]

Lv, J. F.; Chen, Y. H.; Guo, X.; Qiu, J. J.; Zhang, Z. L.; Wang, J. Q.; Liang, H. Y.; Zhang, L.; Zhu, L.; Liu, F. et al. A novel A-DA’D-A bifunctional small molecule for organic solar cell applications with impressive photovoltaic performance. J. Mater. Chem. A 2022, 10, 16497–16505.

[51]

Xu, X.; Sun, C. Y.; Jing, J. H.; Niu, T. Q.; Wu, X.; Zhang, K.; Huang, F.; Xu, Q. H.; Yuan, J.; Lu, X. H. et al. High-performance ternary organic solar cells enabled by introducing a new A-DA’D-A guest acceptor with higher-lying LUMO level. ACS Appl. Mater. Interfaces 2022, 14, 36582–36591.

[52]

Kang, H.; Lee, W.; Oh, J.; Kim, T.; Lee, C.; Kim, B. J. From fullerene-polymer to all-polymer solar cells: The importance of molecular packing, orientation, and morphology control. Acc. Chem. Res. 2016, 49, 2424–2434.

[53]

Liu, Y. H.; Liu, B. W.; Ma, C. Q.; Huang, F.; Feng, G. T.; Chen, H. Z.; Hou, J. H.; Yan, L. P.; Wei, Q. Y.; Luo, Q. et al. Recent progress in organic solar cells (Part II device engineering). Sci. China Chem. 2022, 65, 1457–1497.

[54]

Liang, Q. J.; Chang, Y. X.; Liang, C. W.; Zhu, H. L.; Guo, Z. B.; Liu, J. G. Application of crystallization kinetics strategy in morphology control of solar cells based on nonfullerene blends. Acta Phys. Chim. Sin. 2023, 39, 2212006.

[55]

Nie, Q. L.; Tang, A. L.; Guo, Q.; Zhou, E. J. Benzothiadiazole-based non-fullerene acceptors. Nano Energy 2021, 87, 106174.

[56]

Cong, P. Q.; Wang, Z. T.; Geng, Y. F.; Meng, Y. H.; Meng, C.; Chen, L.; Tang, A. L.; Zhou, E. J. Benzothiadiazole-based polymer donors. Nano Energy 2023, 105, 108017.

[57]

Yuan, J.; Zhang, Y. Q.; Zhou, L. Y.; Zhang, C. J.; Lau, T. K.; Zhang, G. C.; Lu, X. H.; Yip, H. L.; So, S. K.; Beaupré, S. et al. Fused benzothiadiazole: A building block for n-type organic acceptor to achieve high-performance organic solar cells. Adv. Mater. 2019, 31, 1807577.

[58]

Tao, L. P.; Liu, X. H.; Deng, C. B.; Zhang, W. J.; Song, W. J. Highly efficient nonfullerene acceptor with sulfonyl-based ending groups. ACS Appl. Mater. Interfaces 2020, 12, 49659–49665.

[59]

Xiao, J. B.; Yan, T. T.; Lei, T.; Li, Y. B.; Han, Y. F.; Cao, L.; Song, W.; Tan, S. T.; Ge, Z. Y. Organic solar cells based on non-fullerene acceptors of nine fused-ring by modifying end groups. Org. Electron. 2020, 81, 105662.

[60]

Lu, H.; Liu, W. X.; Jin, H.; Huang, H.; Tang, Z.; Bo, Z. S. High-efficiency organic solar cells with reduced nonradiative voltage loss enabled by a highly emissive narrow bandgap fused ring acceptor. Adv. Funct. Mater. 2022, 32, 2107756.

[61]

Lai, H. J.; Liu, L. Z.; Zheng, N.; Han, L.; He, F. Push or pull electrons: Acetoxy and carbomethoxy-substituted isomerisms in organic solar cell acceptors. J. Phys. Chem. Lett. 2021, 12, 4666–4673.

[62]

Lee, S.; Park, G.; Jeong, M.; Lee, B.; Jeong, S.; Park, J.; Cho, Y.; Noh, S. M.; Yang, C. γ-ester-functionalized 1,1-dicyanomethylene-3-indanone end-capped nonfullerene acceptors for high-performance, annealing-free organic solar cells. ACS Appl. Mater. Interfaces 2022, 14, 33614–33625.

[63]

Wang, T.; An, R. Q.; Cao, M. Q.; Shu, H. Y.; Wu, X. F.; Tong, H.; Wang, L. X. Nonfullerene acceptors with cyano-modified terminal groups for organic solar cells: Effect of substitution position on photovoltaic properties. Dyes Pigm. 2022, 206, 110661.

[64]

Li, G. P.; Zhang, X. H.; Jones, L. O.; Alzola, J. M.; Mukherjee, S.; Feng, L. W.; Zhu, W. G.; Stern, C. L.; Huang, W.; Yu, J. S. et al. Systematic merging of nonfullerene acceptor π-extension and tetrafluorination strategies affords polymer solar cells with > 16% efficiency. J. Am. Chem. Soc. 2021, 143, 6123–6139.

[65]

Zhang, X. H.; Li, G. P.; Mukherjee, S.; Huang, W.; Zheng, D.; Feng, L. W.; Chen, Y.; Wu, J. L.; Sangwan, V. K.; Hersam, M. C. et al. Systematically controlling acceptor fluorination optimizes hierarchical morphology, vertical phase separation, and efficiency in non-fullerene organic solar cells. Adv. Energy Mater. 2022, 12, 2102172.

[66]

Qin, R.; Wang, D.; Zhou, G. Q.; Yu, Z. P.; Li, S. X.; Li, Y. H.; Liu, Z. X.; Zhu, H. M.; Shi, M. M.; Lu, X. H. et al. Tuning terminal aromatics of electron acceptors to achieve high-efficiency organic solar cells. J. Mater. Chem. A 2019, 7, 27632–27639.

[67]

Xie, M. L.; Shi, Y. N.; Zhang, H.; Pan, J. X.; Zhang, J. Q.; Wei, Z. X.; Lu, K. Aryl-substituted-indanone end-capped nonfullerene acceptors for organic solar cells with a low nonradiative loss. Chem. Commun. 2022, 58, 4877–4880.

[68]

Sun, C. Z.; Lai, X.; Rehman, T.; Lai, H. J.; Ke, C. X.; Shen, X. Y.; Zhu, Y. L.; Tian, L. L.; He, F. Benzonitrile-functionalized non-fullerene acceptors for organic solar cells with low non-radiative loss. J. Mater. Chem. C 2022, 10, 17174–17181.

[69]

Hai, J. F.; Luo, S. W.; Yu, H.; Chen, H. G.; Lu, Z. H.; Li, L.; Zou, Y. P.; Yan, H. Achieving ultra-narrow bandgap non-halogenated non-fullerene acceptors via vinylene π-bridges for efficient organic solar cells. Mater. Adv. 2021, 2, 2132–2140.

[70]

Xiao, B.; Tang, A. L.; Zhang, J. Q.; Mahmood, A.; Wei, Z. X.; Zhou, E. J. Achievement of high VOC of 1.02 V for P3HT-based organic solar cell using a benzotriazole-containing non-fullerene acceptor. Adv. Energy Mater. 2017, 7, 1602229.

[71]

Xiao, B.; Tang, A.; Yang, J.; Wei, Z.; Zhou, E. P3HT-based photovoltaic cells with a high VOC of 1.22 V by using a benzotriazole-containing nonfullerene acceptor end-capped with thiazolidine-2,4-dione. ACS Macro Lett 2017, 6, 410–414.

[72]

Tang, A. L.; Xiao, B.; Wang, Y. M.; Gao, F.; Tajima, K.; Bin, H.; Zhang, Z. G.; Li, Y. F.; Wei, Z. X.; Zhou, E. J. Simultaneously achieved high open-circuit voltage and efficient charge generation by fine-tuning charge-transfer driving force in nonfullerene polymer solar cells. Adv. Funct. Mater. 2018, 28, 1704507.

[73]

Yuan, J.; Huang, T. Y.; Cheng, P.; Zou, Y. P.; Zhang, H. T.; Yang, J. L.; Chang, S. Y.; Zhang, Z. Z.; Huang, W. C.; Wang, R. et al. Enabling low voltage losses and high photocurrent in fullerene-free organic photovoltaics. Nat. Commun. 2019, 10, 570.

[74]

Luo, M.; Zhou, L. Y.; Yuan, J.; Zhu, C.; Cai, F. F.; Hai, J. F.; Zou, Y. P. A new non-fullerene acceptor based on the heptacyclic benzotriazole unit for efficient organic solar cells. J. Energy Chem. 2020, 42, 169–173.

[75]

Zhang, Y. Q.; Cai, F. F.; Yuan, J.; Wei, Q. Y.; Zhou, L. Y.; Qiu, B. B.; Hu, Y. B.; Li, Y. F.; Peng, H. J.; Zou, Y. P. A new non-fullerene acceptor based on the combination of a heptacyclic benzothiadiazole unit and a thiophene-fused end group achieving over 13% efficiency. Phys. Chem. Chem. Phys. 2019, 21, 26557–26563.

[76]

Li, C.; Lu, G. K.; Ryu, H. S.; Sun, X. B.; Woo, H. Y.; Sun, Y. M. Effect of terminal electron-withdrawing group on the photovoltaic performance of asymmetric fused-ring electron acceptors. ACS Appl. Mater. Interfaces 2022, 14, 43207–43214.

[77]

Yang, H.; Bao, S. N.; Cui, N. Z.; Fan, H. Y.; Hu, K. W.; Cui, C. H.; Li, Y. F. Morphology optimization of the photoactive layer through crystallinity and miscibility regulation for high-performance polymer solar cells. Angew. Chem., Int. Ed. 2023, 62, e202216338.

[78]

Yang, J.; Geng, Y. F.; Li, J. F.; Zhao, B. M.; Guo, Q.; Zhou, E. J. A-DA′D-A-type non-fullerene acceptors containing a fused heptacyclic ring for poly(3-hexylthiophene)-based polymer solar cells. J. Phys. Chem. C 2020, 124, 24616–24623.

[79]

Xiao, Y. Z.; He, Z. H.; Jiang, H.; Zuo, K. Y.; Guo, Q.; Geng, Y. F.; Liu, Y. L.; Zhou, E. J. Application of A-DA’D-A non-fullerene acceptor with benzotriazole core in poly(3-hexylthiophene)-based organic solar cells. Dyes Pigm. 2022, 204, 110375.

[80]

Firdaus, Y.; He, Q.; Muliani, L.; Rosa, E. S.; Heeney, M.; Anthopoulos, T. D. Charge transport and recombination in wide-bandgap Y6 derivatives-based organic solar cells. Adv. Nat. Sci. Nanosci. Nanotechnol. 2022, 13, 025001.

Nano Research
Pages 12949-12961
Cite this article:
Liu H, Dai T, Zhou J, et al. The development of A-DA’D-A type nonfullerene acceptors containing non-halogenated end groups. Nano Research, 2023, 16(12): 12949-12961. https://doi.org/10.1007/s12274-023-5693-z
Topics:
Part of a topical collection:

1278

Views

6

Crossref

4

Web of Science

8

Scopus

0

CSCD

Altmetrics

Received: 06 February 2023
Revised: 16 March 2023
Accepted: 26 March 2023
Published: 18 May 2023
© Tsinghua University Press 2023
Return