AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Selective photo-reduction of nitrate to nitrogen with a two-step process by a KBH4/Cu(II) modified CuFe2O4 photocatalyst

Li Cai1Jinrui Guo1Ting Liu1Jing Tian1Zhaoli Wang2Yong Liu1,3( )Mohamed S. Hamdy4Xuping Sun5( )
College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, China
Chengdu Academy of Environmental Sciences, Chengdu 610072, China
Key Laboratory of Treatment for Special Wastewater of Sichuan Province Higher Education System, Chengdu 610066, China
Catalysis Research Group (CRG), Department of Chemistry, College of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
Show Author Information

Graphical Abstract

Cu@Fe-Cu-CuFe2O4−x is an effective and stable nitrate reduction photocatalyst, achieving high-efficiency for NO3 reduction by two-step process with 95.0% NO3− removal efficiency and 90.1% N2 selectivity.

Abstract

Nitrate (NO3) removal by photochemical-reduction has received extensive attention. However, the low selectivity of NO3 reduction to N2 hinders the application of this technology. In this study, a novel Cu@Fe-Cu-CuFe2O4−x photocatalyst was prepared by modifying CuFe2O4 with KBH4 and Cu(II), and used to selectively reduce NO3 to N2 with a two-step reduction process. In step (1), with Cu@Fe-Cu-CuFe2O4−x/ultraviolet (UV) system, 91.0% NO3 was reduced to 52.3% NO2 and 39.4% N2 within 60 min. The rapid removal of NO3 was due to the synergistic effect of oxygen vacancies, Fe-Cu corrosion cell, and CuFe2O4 photocatalysis. In step (2), H2C2O4 and H2O2 were introduced into the effluent of step (1) to promote CO2· formation via Fe(II) and Fe(III) catalysis and UV radiation, which boosted the selective reduction of NO2 to N2. When H2C2O4 and H2O2 dosages were both 4.0 mmol·L−1 and the reaction time was 30 min, the removal efficiency of NO2 achieved 100% and the selectivity of N2 was 83.0%. Overall, the two-step reduction process achieved 95.0% NO3 removal efficiency and 90.1% N2 selectivity with initial NO3 concentration of 30 mg·N·L−1. In addition, the denitrification mechanism of the two-step reduction process was tentatively proposed.

Electronic Supplementary Material

Download File(s)
12274_2023_5696_MOESM1_ESM.pdf (294.7 KB)

References

[1]

Li, R. B.; Cai, M. X.; Xie, Z. J.; Zhang, Q. X.; Zeng, Y. Q.; Liu, H. J.; Liu, G. G.; Lv, W. Y. Construction of heterostructured CuFe2O4/g-C3N4 nanocomposite as an efficient visible light photocatalyst with peroxydisulfate for the organic oxidation. Appl. Catal. B: Environ. 2019, 244, 974–982.

[2]

Tugaoen, H. O.; Herckes, P.; Hristovski, K.; Westerhoff, P. Influence of ultraviolet wavelengths on kinetics and selectivity for N-gases during TiO2 photocatalytic reduction of nitrate. Appl. Catal. B: Environ. 2018, 220, 597–606.

[3]

Chen, X. T.; Zhang, T.; Kan, M.; Song, D. G.; Jia, J. P.; Zhao, Y. X.; Qian, X. F. Binderless and oxygen vacancies rich FeNi/graphitized mesoporous carbon/Ni foam for electrocatalytic reduction of nitrate. Environ. Sci. Technol. 2020, 54, 13344–13353.

[4]

Tyagi, S.; Rawtani, D.; Khatri, N.; Tharmavaram, M. Strategies for nitrate removal from aqueous environment using nanotechnology: A review. J. Water Process. Eng. 2018, 21, 84–95.

[5]

Duca, M.; Koper, M. T. M. Powering denitrification: The perspectives of electrocatalytic nitrate reduction. Energy Environ. Sci. 2012, 5, 9726–9742.

[6]

Wen, G. L.; Liang, J.; Liu, Q.; Li, T. S.; An, X. G.; Zhang, F.; Alshehri, A. A.; Alzahrani, K. A.; Luo, Y. L.; Kong, Q. Q. et al. Ambient ammonia production via electrocatalytic nitrite reduction catalyzed by a CoP nanoarray. Nano Res. 2022, 15, 972–977.

[7]

Martínez, J.; Ortiz, A.; Ortiz, I. State-of-the-art and perspectives of the catalytic and electrocatalytic reduction of aqueous nitrates. Appl. Catal. B: Environ. 2017, 207, 42–59.

[8]

Pérez-Gallent, E.; Figueiredo, M. C.; Katsounaros, I.; Koper, M. T. M. Electrocatalytic reduction of nitrate on copper single crystals in acidic and alkaline solutions. Electrochim. Acta 2017, 227, 77–84.

[9]

Liu, Y.; Wang, J. L. Reduction of nitrate by zero valent iron (ZVI)-based materials: A review. Sci. Total Environ. 2019, 671, 388–403.

[10]

Fseha, Y. H.; Sizirici, B.; Yildiz, I. Manganese and nitrate removal from groundwater using date palm biochar: Application for drinking water. Environ. Adv. 2022, 8, 100237.

[11]

Wang, Z. Y.; Dai, L. Y.; Yao, J. C.; Guo, T. J.; Hrynsphan, D.; Tatsiana, S.; Chen, J. Enhanced adsorption and reduction performance of nitrate by Fe-Pd-Fe3O4 embedded multi-walled carbon nanotubes. Chemosphere 2021, 281, 130718.

[12]

Wu, W. Z.; Yang, F. F.; Yang, L. H. Biological denitrification with a novel biodegradable polymer as carbon source and biofilm carrier. Bioresour. Technol. 2012, 118, 136–140.

[13]

Fan, X. Y.; Xie, L. S.; Liang, J.; Ren, Y. C.; Zhang, L. C.; Yue, L. C.; Li, T. S.; Luo, Y. L.; Li, N.; Tang, B. et al. In situ grown Fe3O4 particle on stainless steel: A highly efficient electrocatalyst for nitrate reduction to ammonia. Nano Res. 2022, 15, 3050–3055.

[14]

Li, Z. Y.; Zhao, Y. J.; Guan, Q.; Liu, Q.; Khan, S.; Zhang, L. L.; Wang, X. Z.; Chen, L.; Yang, X.; Huo, M. X. Novel direct dual Z-scheme AgBr(Ag)/MIL-101(Cr)/CuFe2O4 for efficient conversion of nitrate to nitrogen. Appl. Surf. Sci. 2020, 508, 145225.

[15]

Shen, H. D.; Yang, M. M.; Hao, L. D.; Wang, J. R.; Strunk, J.; Sun, Z. Y. Photocatalytic nitrogen reduction to ammonia: Insights into the role of defect engineering in photocatalysts. Nano Res. 2022, 15, 2773–2809.

[16]

Silveira, J. E.; Ribeiro, A. R.; Carbajo, J.; Pliego, G.; Zazo, J. A.; Casas, J. A. The photocatalytic reduction of NO3 to N2 with ilmenite (FeTiO3): Effects of groundwater matrix. Water Res. 2021, 200, 117250.

[17]

Guo, W. L.; Zhang, Z. H.; Lin, H.; Cai, L. Z-scheme BiFeO3-CNTs-PPy as a highly effective and stable photocatalyst for selective oxidation of benzyl alcohol under visible-light irradiation. Mol. Catal. 2020, 492, 111011.

[18]

Cheng, D. S.; Yan, C. W.; Liu, Y. H.; Zhou, Y.; Lu, D. D.; Tang, X. N.; Cai, G. M.; Li, D. Q.; Zhao, Z.; Wang, X. Loading CuFe2O4 onto ceramic fabric for photocatalytic degradation of methylene blue under visible light irradiation. Ceram. Int. 2022, 48, 1256–1263.

[19]

Fugate, E. A.; Biswas, S.; Clement, M. C.; Kim, M.; Kim, D.; Asthagiri, A.; Baker, L. R. The role of phase impurities and lattice defects on the electron dynamics and photochemistry of CuFeO2 solar photocathodes. Nano Res. 2019, 12, 2390–2399.

[20]

Li, X. H.; Zuo, M. H.; Wu, J. H.; Feng, L.; Wang, Z. Z.; Liu, B. Z. Wet chemistry synthesis of CuFe2O4/CdSe heterojunction for enhanced efficient photocatalytic H2 evolution under visible irradiation. Int. J. Hydrogen Energy 2021, 46, 13001–13010.

[21]

Cao, Y.; Fang, Y.; Lei, X. Y.; Tan, B. H.; Hu, X.; Liu, B. J.; Chen, Q. L. Fabrication of novel CuFe2O4/MXene hierarchical heterostructures for enhanced photocatalytic degradation of sulfonamides under visible light. J. Hazard. Mater. 2020, 387, 122021.

[22]

Wang, B. Q.; An, B. H.; Liu, Y.; Chen, J. L.; Zhou, J. Y. Selective reduction of nitrate into nitrogen at neutral pH range by iron/copper bimetal coupled with formate/ferric ion and ultraviolet radiation. Sep. Purif. Technol. 2020, 248, 117061.

[23]

Liu, X. Q.; Cai, L. A novel double Z-scheme BiOBr-GO-polyaniline photocatalyst: Study on the excellent photocatalytic performance and photocatalytic mechanism. Appl. Surf. Sci. 2019, 483, 875–887.

[24]

Zhang, J. M.; Liu, P. X.; Ren, Y. M.; Du, Y. C.; Geng, C. B.; Ma, J.; Zhao, F. B. Treatment of shale gas produced water by magnetic CuFe2O4/TNTs hybrid heterogeneous catalyzed ozone: Efficiency and mechanisms. J. Hazard. Mater. 2022, 423, 127124.

[25]

Bui, H. T.; Weon, S.; Bae, J. W.; Kim, E. J.; Kim, B.; Ahn, Y. Y.; Kim, K.; Lee, H.; Kim, W. Oxygen vacancy engineering of cerium oxide for the selective photocatalytic oxidation of aromatic pollutants. J. Hazard. Mater. 2021, 404, 123976.

[26]

Li, Z. R.; Deng, Z. Q.; Ouyang, L.; Fan, X. Y.; Zhang, L. C.; Sun, S. J.; Liu, Q.; Alshehri, A. A.; Luo, Y. L.; Kong, Q. Q. et al. CeO2 nanoparticles with oxygen vacancies decorated N-doped carbon nanorods: A highly efficient catalyst for nitrate electroreduction to ammonia. Nano Res. 2022, 15, 8914–8921.

[27]

Liu, X. Q.; Duan, X. G.; Bao, T.; Hao, D.; Chen, Z. J.; Wei, W.; Wang, D. B.; Wang, S. B.; Ni, B. J. High-performance photocatalytic decomposition of PFOA by BiOX/TiO2 heterojunctions: Self-induced inner electric fields and band alignment. J. Hazard. Mater. 2022, 430, 128195.

[28]

Li, J. J.; Zhang, M.; Weng, B.; Chen, X.; Chen, J.; Jia, H. P. Oxygen vacancies mediated charge separation and collection in Pt/WO3 nanosheets for enhanced photocatalytic performance. Appl. Surf. Sci. 2020, 507, 145133.

[29]

Guo, J. R.; Tian, J.; Deng, J. H.; Yang, X. Y.; Duan, B. H.; Liu, Y. Catalytic reduction of CO2 by Al-Sn-CNTs composite for synthesizing formic acid. Int. J. Hydrogen Energy 2021, 46, 29960–29971.

[30]

An, B. H.; Cai, L.; Liu, T.; Tian, J.; Liu, Y. Selective photo-reduction of NO2 to N2 in the presence of Fe2+ and citric acid. Sci. Total Environ. 2022, 819, 152963.

[31]

An, B. H.; He, H. N.; Duan, B. H.; Deng, J. H.; Liu, Y. Selective reduction of nitrite to nitrogen gas by CO2 anion radical from the activation of oxalate. Chemosphere 2021, 278, 130388.

[32]

Jin, B.; Wang, J. G.; Xu, F. X.; Li, D. F.; Men, Y. Hierarchical hollow WO3 microspheres with tailored surface oxygen vacancies for boosting photocatalytic selective conversion of biomass-derived alcohols. Appl. Surf. Sci. 2021, 547, 149239.

[33]

Liang, M. F.; Borjigin, T.; Zhang, Y. H.; Liu, B. H.; Liu, H.; Guo, H. Controlled assemble of hollow heterostructured g-C3N4@CeO2 with rich oxygen vacancies for enhanced photocatalytic CO2 reduction. Appl. Catal. B: Environ. 2019, 243, 566–575.

[34]

Zhang, D. F.; Wang, B. Q.; Gong, X. B.; Yang, Z.; Liu, Y. Selective reduction of nitrate to nitrogen gas by novel Cu2O-Cu0@Fe0 composite combined with HCOOH under UV radiation. Chem. Eng. J. 2019, 359, 1195–1204.

[35]

Zhao, W. K.; Zhang, S. L.; Ding, J.; Deng, Z. Y.; Guo, L. N.; Zhong, Q. Enhanced catalytic ozonation for NOx removal with CuFe2O4 nanoparticles and mechanism analysis. J. Mol. Catal. A: Chem. 2016, 424, 153–161.

[36]

Guo, Y. G.; Zhao, Y.; Yang, T. X.; Gong, B.; Chen, B. Highly efficient nano-Fe/Cu bimetal-loaded mesoporous silica Fe/Cu-MCM-41 for the removal of Cr(VI): Kinetics, mechanism and performance. J. Hazard. Mater. 2021, 418, 126344.

[37]

Yu, L. Q.; Zhao, Y. H.; Wang, H.; Jin, F.; Chen, S. L.; Wen, T. E.; He, C. S.; Huang, B. C.; Jin, R. C. Surface oxygen vacancies formation on Zn2SnO4 for bisphenol—A degradation under visible light: The tuning effect by peroxymonosulfate. J. Hazard. Mater. 2022, 426, 127828.

[38]

Dong, Q. X.; Dong, H. R.; Li, Y. J.; Xiao, J. Y.; Xiang, S. X.; Hou, X. Z.; Chu, D. D. Degradation of sulfamethazine in water by sulfite activated with zero-valent Fe-Cu bimetallic nanoparticles. J. Hazard. Mater. 2022, 431, 128601.

[39]

Cui, L. L.; Li, Z. W.; Li, Q. Q.; Chen, M. F.; Jing, W. H.; Gu, X. H. Cu/CuFe2O4 integrated graphite felt as a stable bifunctional cathode for high-performance heterogeneous electro-Fenton oxidation. Chem. Eng. J. 2021, 420, 127666.

[40]

Ding, Y. B.; Zhu, L. H.; Wang, N.; Tang, H. Q. Sulfate radicals induced degradation of tetrabromobisphenol A with nanoscaled magnetic CuFe2O4 as a heterogeneous catalyst of peroxymonosulfate. Appl. Catal. B: Environ. 2013, 129, 153–162.

[41]

Ding, R. R.; Li, W. Q.; He, C. S.; Wang, Y. R.; Liu, X. C.; Zhou, G. N.; Mu, Y. Oxygen vacancy on hollow sphere CuFe2O4 as an efficient Fenton-like catalysis for organic pollutant degradation over a wide pH range. Appl. Catal. B: Environ. 2021, 291, 120069.

[42]

Hankin, A.; Bedoya-Lora, F. E.; Alexander, J. C.; Regoutz, A.; Kelsall, G. H. Flat band potential determination: Avoiding the pitfalls. J. Mater. Chem. A 2019, 7, 26162–26176.

[43]

Radecka, M.; Rekas, M.; Trenczek-Zajac, A.; Zakrzewska, K. Importance of the band gap energy and flat band potential for application of modified TiO2 photoanodes in water photolysis. J. Power Sources 2008, 181, 46–55.

[44]

Cai, L.; Jiang, H.; Wang, L. X. Enhanced photo-stability and photocatalytic activity of Ag3PO4 via modification with BiPO4 and polypyrrole. Appl. Surf. Sci. 2017, 420, 43–52.

[45]

Cui, H.; Yao, C. F.; Cang, Y. G.; Liu, W. T.; Zhang, Z. H.; Miao, Y. Q.; Xin, Y. M. Oxygen vacancy-regulated TiO2 nanotube photoelectrochemical sensor for highly sensitive and selective detection of tetracycline hydrochloride. Sens. Actuators B: Chem. 2022, 359, 131564.

[46]

Guo, J. R.; Deng, J. H.; An, B. H.; Tian, J.; Wu, J. S.; Liu, Y. Selective reduction of nitrate to nitrogen by Fe0-Cu0-CuFe2O4 composite coupled with carbon dioxide anion radical under UV irradiation. Chemosphere 2022, 295, 133785.

[47]
Zeng, Y. Analytical Chemistry; Higher Education Press: Beijing, 2010.
[48]

Huang, Y.; Kong, M. H.; Westerman, D.; Xu, E. G.; Coffin, S.; Cochran, K. H.; Liu, Y. Q.; Richardson, S. D.; Schlenk, D.; Dionysiou, D. D. Effects of HCO3 on degradation of toxic contaminants of emerging concern by UV/NO3. Environ. Sci. Technol. 2018, 52, 12697–12707.

[49]

Liu, Y.; Zhao, Y.; Wang, J. L. Fenton/Fenton-like processes with in-situ production of hydrogen peroxide/hydroxyl radical for degradation of emerging contaminants: Advances and prospects. J. Hazard. Mater. 2021, 404, 124191.

[50]

Liu, Y. B.; Zhang, X. M.; Deng, J. H.; Liu, Y. A novel CNTs-Fe3O4 synthetized via a ball-milling strategy as efficient Fenton-like catalyst for degradation of sulfonamides. Chemosphere 2021, 277, 130305.

Nano Research
Pages 10462-10475
Cite this article:
Cai L, Guo J, Liu T, et al. Selective photo-reduction of nitrate to nitrogen with a two-step process by a KBH4/Cu(II) modified CuFe2O4 photocatalyst. Nano Research, 2023, 16(7): 10462-10475. https://doi.org/10.1007/s12274-023-5696-9
Topics:

672

Views

13

Crossref

10

Web of Science

11

Scopus

0

CSCD

Altmetrics

Received: 22 February 2023
Revised: 24 March 2023
Accepted: 28 March 2023
Published: 28 April 2023
© Tsinghua University Press 2023
Return