AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Synthesis of fluorinated CaCO3-based oxygen-supplying nanophotosensitizers to potentiate photodynamic immunotherapy by reversing tumor hypoxia and immunosuppression

Yunyun ZhangZiliang DongYu HaoYimou GongChunjie WangYifan YanMinming ChenYumin WuQuguang LiZhuang LiuLiangzhu Feng( )
Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren’ ai Road, Suzhou 215123, China
Show Author Information

Graphical Abstract

PFCE/hCe6@CaF-PEG can gradually release the oxygen that adsorbed in lungs to relieve tumor hypoxia and induce immunogenic cancer cell death in synergizing with tumor localized 660-nm LED light irradiation. As a result, such photodynamic treatment can not only suppress the growth of primary irradiated tumors, but also elicit potent antitumor immunity to inhibit the growth of distant tumors, particularly when concurrently applied with anti-PD-1 immunotherapy.

Abstract

Photodynamic therapy is a noninvasive type of phototherapy with a high capacity to boost specific antitumor immunity by causing immunogenic cell death. However, the photodynamic therapeutic potency toward solid tumors is dampened by tumor hypoxia that negatively impairs the generation of cytotoxic singlet oxygen and promotes the formation of tumor immunosuppression. Herein, fluorinated CaCO3 (CaF) nanoparticles are prepared with the addition of dopamine-conjugated perfluorosebacic acid and ferric chloride into a calcium chloride ethanol solution via an ammonium bicarbonate-mediated gas-diffusion process. After being coated with commercial lipids and hexadecylamin conjugated chlorin e6 (hCe6) via a templated self-assembly process, the yielded PEGylated nanophotosensitizer (hCe6@CaF-PEG) exhibits an effective loading efficiency to perfluoro-15-crown-5-ether (PFCE), a model perfluorocarbon molecule, and thus oxygen molecules. Upon intravenous administration, the obtained PFCE/hCe6@CaF-PEG can alleviate tumor hypoxia by working as an oxygen nanoshuttle. Together with local light emitting diode light exposure, photodynamic treatment with PFCE/hCe6@CaF-PEG can suppress the growth of primary CT26 tumors and unirradiated distant tumors, particularly when synergized with anti-PD-1 (aPD-1) immunotherapy to collectively reverse tumor immunosuppression. This work presents an effective strategy to potentiate photodynamic immunotherapy by concurrently reversing tumor hypoxia and immunosuppression.

Electronic Supplementary Material

Download File(s)
12274_2023_5698_MOESM1_ESM.pdf (1.1 MB)

References

[1]

Dolmans, D. E. J. G. J.; Fukumura, D.; Jain, R. K. Photodynamic therapy for cancer. Nat. Rev. Cancer 2003, 3, 380–387.

[2]

Huang, Z. A review of progress in clinical photodynamic therapy. Technol. Cancer Res. Treat. 2005, 4, 283–293.

[3]

Van Straten, D.; Mashayekhi, V.; De Bruijn, H. S.; Oliveira, S.; Robinson, D. J. Oncologic photodynamic therapy: Basic principles, current clinical status and future directions. Cancers 2017, 9, 19.

[4]

Algorri, J. F.; Ochoa, M.; Roldán-Varona, P.; Rodríguez-Cobo, L.; López-Higuera, J. M. Light technology for efficient and effective photodynamic therapy: A critical review. Cancers 2021, 13, 3484.

[5]

Larue, L.; Myrzakhmetov, B.; Ben-Mihoub, A.; Moussaron, A.; Thomas, N.; Arnoux, P.; Baros, F.; Vanderesse, R.; Acherar, S.; Frochot, C. Fighting hypoxia to improve PDT. Pharmaceuticals 2019, 12, 163.

[6]

Lan, G. X.; Ni, K. Y.; Xu, Z. W.; Veroneau, S. S.; Song, Y.; Lin, W. B. Nanoscale metal-organic framework overcomes hypoxia for photodynamic therapy primed cancer immunotherapy. J. Am. Chem. Soc. 2018, 140, 5670–5673.

[7]

Morais, J. A. V.; Almeida, L. R.; Rodrigues, M. C.; Azevedo, R. B.; Muehlmann, L. A. The induction of immunogenic cell death by photodynamic therapy in B16F10 cells in vitro is effected by the concentration of the photosensitizer. Photodiagn. Photodyn. Ther. 2021, 35, 102392.

[8]

Su, Y. Z.; Xu, W. G.; Wei, Q.; Ma, Y.; Ding, J. X.; Chen, X. S. Chiral polypeptide nanoparticles as nanoadjuvants of nanovaccines for efficient cancer prevention and therapy. Sci. Bull. 2023, 68, 284–294.

[9]

Chouaib, S.; Noman, M. Z.; Kosmatopoulos, K.; Curran, M. A. Hypoxic stress: Obstacles and opportunities for innovative immunotherapy of cancer. Oncogene 2017, 36, 439–445.

[10]

Kopecka, J.; Salaroglio, I. C.; Perez-Ruiz, E.; Sarmento-Ribeiro, A. B.; Saponara, S.; De Las Rivas, J.; Riganti, C. Hypoxia as a driver of resistance to immunotherapy. Drug Resistance Updates 2021, 59, 100787.

[11]

Pham, T. C.; Nguyen, V. N.; Choi, Y.; Lee, S.; Yoon, J. Recent strategies to develop innovative photosensitizers for enhanced photodynamic therapy. Chem. Rev. 2021, 121, 13454–13619.

[12]

He, Q. Y.; Zhang, Z. J.; Liu, H. J.; Tuo, Z.; Zhou, J.; Hu, Y.; Sun, Y. J.; Wan, C.; Xu, Z. S.; Lovell, J. F. et al. Relieving immunosuppression during long-term anti-angiogenesis therapy using photodynamic therapy and oxygen delivery. Nanoscale 2020, 12, 14788–14800.

[13]

Xing, L.; Gong, J. H.; Wang, Y.; Zhu, Y.; Huang, Z. J.; Zhao, J.; Li, F.; Wang, J. H.; Wen, H.; Jiang, H. L. Hypoxia alleviation-triggered enhanced photodynamic therapy in combination with IDO inhibitor for preferable cancer therapy. Biomaterials 2019, 206, 170–182.

[14]

Lin, L.; Song, X. J.; Dong, X. C.; Li, B. H. Nano-photosensitizers for enhanced photodynamic therapy. Photodiagn. Photodyn. Ther. 2021, 36, 102597.

[15]

Wei, F. M.; Rees, T. W.; Liao, X. X.; Ji, L. N.; Chao, H. Oxygen self-sufficient photodynamic therapy. Coord. Chem. Rev. 2021, 432, 213714.

[16]

Maleki Dizaj, S.; Barzegar-Jalali, M.; Zarrintan, M. H.; Adibkia, K.; Lotfipour, F. Calcium carbonate nanoparticles as cancer drug delivery system. Expert Opin. Drug Deliv. 2015, 12, 1649–1660.

[17]

Castro, C. I.; Briceno, J. C. Perfluorocarbon-based oxygen carriers: Review of products and trials. Artif. Organs 2010, 34, 622–634.

[18]

Dong, Z. L.; Feng, L. Z.; Zhu, W. W.; Sun, X. Q.; Gao, M.; Zhao, H.; Chao, Y.; Liu, Z. CaCO3 nanoparticles as an ultra-sensitive tumor-pH-responsive nanoplatform enabling real-time drug release monitoring and cancer combination therapy. Biomaterials 2016, 110, 60–70.

[19]

Dong, Z. L.; Wang, C. J.; Gong, Y. M.; Zhang, Y. Y.; Fan, Q.; Hao, Y.; Li, Q. G.; Wu, Y. M.; Zhong, X. Y.; Yang, K. et al. Chemical modulation of glucose metabolism with a fluorinated CaCO3 nanoregulator can potentiate radiotherapy by programming antitumor immunity. ACS Nano 2022, 16, 13884–13899.

[20]

Han, Y. K.; Dong, Z. L.; Wang, C. J.; Li, Q. G.; Hao, Y.; Yang, Z. J.; Zhu, W. J.; Zhang, Y. Y.; Liu, Z.; Feng, L. Z. Ferrous ions doped calcium carbonate nanoparticles potentiate chemotherapy by inducing ferroptosis. J. Controlled Release 2022, 348, 346–356.

[21]
Zhong, W. Z.; Wong, K. H.; Xu, F. J.; Zhao, N. N.; Chen, M. W. NIR-responsive polydopamine-based calcium carbonate hybrid nanoparticles delivering artesunate for cancer chemo-photothermal therapy. Acta Biomater. 2022, 145, 135–145.
[22]

Dong, Z. L.; Feng, L. Z.; Hao, Y.; Chen, M. C.; Gao, M.; Chao, Y.; Zhao, H.; Zhu, W. W.; Liu, J. J.; Liang, C. et al. Synthesis of hollow biomineralized CaCO3-polydopamine nanoparticles for multimodal imaging-guided cancer photodynamic therapy with reduced skin photosensitivity. J. Am. Chem. Soc. 2018, 140, 2165–2178.

[23]

Tao, D. L.; Feng, L. Z.; Chao, Y.; Liang, C.; Song, X. J.; Wang, H. R.; Yang, K.; Liu, Z. Covalent organic polymers based on fluorinated porphyrin as oxygen nanoshuttles for tumor hypoxia relief and enhanced photodynamic therapy. Adv. Funct. Mater. 2018, 28, 1804901.

[24]

Song, X. J.; Feng, L. Z.; Liang, C.; Yang, K.; Liu, Z. Ultrasound triggered tumor oxygenation with oxygen-shuttle nanoperfluorocarbon to overcome hypoxia-associated resistance in cancer therapies. Nano Lett. 2016, 16, 6145–6153.

[25]

Feng, L. Z.; Cheng, L.; Dong, Z. L.; Tao, D. L.; Barnhart, T. E.; Cai, W. B.; Chen, M. W.; Liu, Z. Theranostic liposomes with hypoxia-activated prodrug to effectively destruct hypoxic tumors post-photodynamic therapy. ACS Nano 2017, 11, 927–937.

[26]

Huang, C.; Lin, B. Q.; Chen, C. Y.; Wang, H. M.; Lin, X. S.; Liu, J. M.; Ren, Q. F.; Tao, J.; Zhao, P.; Xu, Y. K. Synergistic reinforcing of immunogenic cell death and transforming tumor-associated macrophages via a multifunctional cascade bioreactor for optimizing cancer immunotherapy. Adv. Mater. 2022, 34, 2207593.

[27]

Wang, C. J.; Dong, Z. L.; Hao, Y.; Zhu, Y. J.; Ni, J.; Li, Q. G.; Liu, B.; Han, Y. K.; Yang, Z. J.; Wan, J. M. et al. Coordination polymer-coated CaCO3 reinforces radiotherapy by reprogramming the immunosuppressive metabolic microenvironment. Adv. Mater. 2022, 34, 2106520.

[28]

Dong, Z. L.; Feng, L. Z.; Chao, Y.; Hao, Y.; Chen, M. C.; Gong, F.; Han, X.; Zhang, R.; Cheng, L.; Liu, Z. Amplification of tumor oxidative stresses with liposomal fenton catalyst and glutathione inhibitor for enhanced cancer chemotherapy and radiotherapy. Nano Lett. 2019, 19, 805–815.

[29]

Audran, M.; Krafft, M. P.; De Ceaurriz, J.; Maturin, J. C.; Sicart, M. T.; Marion, B.; Bougard, G.; Bressolle, F. Determination of perfluorodecalin and perfluoro-N-methylcyclohexylpiperidine in rat blood by gas chromatography-mass spectrometry. J. Chromatogr. B Biomed. Sci. Appl. 2000, 745, 333–343.

[30]

Wang, L. L.; Guan, R. L.; Xie, L. N.; Liao, X. X.; Xiong, K.; Rees, T. W.; Chen, Y.; Ji, L. N.; Chao, H. An ER-targeting iridium(III) complex that induces immunogenic cell death in non-small-cell lung cancer. Angew. Chem. 2021, 133, 4707–4715.

[31]

Hao, Y.; Zhang, L.; Dong, Z. L.; Wang, C. J.; Chao, Y.; Zhao, D. X.; Zhu, Y. J.; Yang, Z. J.; Yang, N. L.; Han, Y. K. et al. Percutaneous implantation of ethanol fueled catalytic hydrogel suppresses tumor growth by triggering ferroptosis. Mater. Today 2022, 55, 7–20.

[32]

Li, Q. F.; Chao, Y.; Liu, B.; Xiao, Z. S.; Yang, Z. J.; Wu, Y. Z.; Liu, Z. Disulfiram loaded calcium phosphate nanoparticles for enhanced cancer immunotherapy. Biomaterials 2022, 291, 121880.

[33]

Deng, Z.; Liu, J. W.; Xi, M.; Wang, C. J.; Fang, H. P.; Wu, X. R.; Zhang, C.; Sun, G. T.; Zhang, Y. F.; Shen, L. et al. Biogenic platinum nanoparticles on bacterial fragments for enhanced radiotherapy to boost antitumor immunity. Nano Today 2022, 47, 101656.

[34]

Yang, Z. J.; Tao, D. L.; Zhong, W. Z.; Liu, Z.; Feng, L. Z.; Chen, M. W. Perfluorocarbon loaded fluorinated covalent organic polymers with effective sonosensitization and tumor hypoxia relief enable synergistic sonodynamic-immunotherapy. Biomaterials 2022, 280, 121250.

[35]

Meng, Z. Q.; Zhou, X. F.; Xu, J.; Han, X.; Dong, Z. L.; Wang, H. R.; Zhang, Y. J.; She, J. L.; Xu, L. G.; Wang, C. et al. Light-triggered in situ gelation to enable robust photodynamic-immunotherapy by repeated stimulations. Adv. Mater. 2019, 31, 1900927.

Nano Research
Pages 9815-9825
Cite this article:
Zhang Y, Dong Z, Hao Y, et al. Synthesis of fluorinated CaCO3-based oxygen-supplying nanophotosensitizers to potentiate photodynamic immunotherapy by reversing tumor hypoxia and immunosuppression. Nano Research, 2023, 16(7): 9815-9825. https://doi.org/10.1007/s12274-023-5698-7
Topics:

856

Views

2

Crossref

2

Web of Science

2

Scopus

0

CSCD

Altmetrics

Received: 09 February 2023
Revised: 25 March 2023
Accepted: 28 March 2023
Published: 24 April 2023
© Tsinghua University Press 2023
Return