AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Printable microlaser arrays with programmable modes for information encryption

Jun RuanDan Guo( )Kun GeZhiyang XuFangyuan LiuTianrui Zhai( )
College of Physics and Optoelectronics, Faculty of Science, Beijing University of Technology, Beijing 100124, China
Show Author Information

Graphical Abstract

We propose a design of printable optical encryption microlaser arrays chips by modulating the whispering gallery mode (WGM) microlaser polarization modes spacing through programming the effective refractive index of the resonant microcavities.

Abstract

Lasing emissions with multiple and tunable modes are promising in coding field as a novel cryptographic primitive. With the advantages of simple fabrication, full-color and high-quality-factor whispering gallery mode lasing inside a circular cross-section, polymer microfibers are attractive for photonic devices. However, polymer lasing microfibers for information encryption have never been reported. Herein, we propose a design of printable lasing microfiber encryption chip by in-situ tuning the effective refractive index of the microresonator arrays via a facile approach. Through inkjet printing high-refractive-index nanoparticles on the designated position of lasing microfiber arrays, the effective refractive index of the microcavities is regulated, and the ratio of wavenumber spacing between transverse electric and transverse magnetic mode to the free spectral range can be modulated, particularly with neglectable influence by the size factor. Thus, the programmable region selective encoding process can be conducted simply by a printing program within several minutes. Besides, the encoded microfiber arrays are encapsulated into polydimethylsiloxane to reduce the scattering loss and environmental interference, and a printable encryption chip is realized. This work is expected to provide a platform for the printable encrypted devices.

Electronic Supplementary Material

Download File(s)
12274_2023_5709_MOESM1_ESM.pdf (2.3 MB)

References

[1]

Gu, M.; Li, X. P.; Cao, Y. Y. Optical storage arrays: A perspective for future big data storage. Light Sci. Appl. 2017, 3, e177.

[2]

Hu, Z. Y.; Comeras, J. M. M. L.; Park, H.; Tang, J. S.; Afzali, A.; Tulevski, G. S.; Hannon, J. B.; Liehr, M.; Han, S. J. Physically unclonable cryptographic primitives using self-assembled carbon nanotubes. Nat. Nanotechnol. 2016, 11, 559–565.

[3]

Lee, J.; Bisso, P. W.; Srinivas, R. L.; Kim, J. J.; Swiston, A. J.; Doyle, P. S. Universal process-inert encoding architecture for polymer microparticles. Nat. Mater. 2014, 13, 524–529.

[4]

Deng, J.; Li, Z. L.; Li, J. X.; Zhou, Z.; Gao, F.; Qiu, C. H.; Yan, B. Metasurface-assisted optical encryption carrying camouflaged information. Adv. Optical Mater. 2022, 10, 2200949.

[5]

Qu, G. Y.; Yang, W. H.; Song, Q. H.; Liu, Y. L.; Qiu, C. W.; Han, J. C.; Tsai, D. P.; Xiao, S. M. Reprogrammable meta-hologram for optical encryption. Nat. Commun. 2020, 11, 5484.

[6]

Yang, Q. S.; Xie, Z. J.; Zhang, M. R.; Ouyang, X.; Xu, Y.; Cao, Y. Y.; Wang, S. C.; Zhu, L. W.; Li, X. P. Ultra-secure optical encryption based on tightly focused perfect optical vortex beams. Nanophotonics 2022, 11, 1063–1070.

[7]

Huang, F. T.; Weng, Y. H.; Lin, Y. X.; Zhang, X. C.; Wang, Y. F.; Chen, S. G. Wetting-enhanced structural color for convenient and reversible encryption of optical information. ACS Appl. Mater. Interfaces 2021, 13, 42276–42286.

[8]
Li, K. X.; Li, H. Z.; Guo, D.; Zhan, X. Q.; Li, A.; Cai, Z. R.; Li, Z.; Qu, Z. Y.; Xue, L. L.; Li, M. Z. et al. 3D optical heterostructure patterning by spatially allocating nanoblocks on a printed matrix. ACS Nano 2022, 16, 14838–14848.
[9]

Gong, X. R.; Qiao, Z.; Liao, Y. K.; Zhu, S.; Shi, L.; Kim, M.; Chen, Y. C. Enzyme-programmable microgel lasers for information encoding and anti-counterfeiting. Adv. Mater. 2022, 34, 2107809.

[10]

Tan, M. L.; Li, F.; Wang, X.; Fan, R. W.; Chen, G. Y. Temporal multilevel luminescence anticounterfeiting through scattering media. ACS Nano 2020, 14, 6532–6538.

[11]

Luo, T.; Zhou, T.; Qu, J. L. Lifetime division multiplexing by multilevel encryption algorithm. ACS Nano 2021, 15, 6257–6265.

[12]

Gu, L.; Wu, H. W.; Ma, H. L.; Ye, W. P.; Jia, W. Y.; Wang, H.; Chen, H. Z.; Zhang, N.; Wang, D. D.; Qian, C. et al. Color-tunable ultralong organic room temperature phosphorescence from a multicomponent copolymer. Nat. Commun. 2020, 11, 944.

[13]

Xie, Y.; Song, Y. P.; Sun, G. T.; Hu, P. F.; Bednarkiewicz, A.; Sun, L. N. Lanthanide-doped heterostructured nanocomposites toward advanced optical anti-counterfeiting and information storage. Light Sci. Appl. 2022, 11, 150.

[14]

Zhou, Q. W.; Qiu, X. C.; Su, X. L.; Liu, Q.; Wen, Y.; Xu, M.; Li, F. Y. Light-responsive luminescent materials for information encryption against burst force attack. Small 2021, 17, 2100377.

[15]

Zhou, Y. S.; Zhao, G.; Bian, J. M.; Tian, X. L.; Cheng, X. J.; Wang, H.; Chen, H. Y. Multiplexed SERS barcodes for anti-counterfeiting. ACS Appl. Mater. Interfaces 2020, 12, 28532–28538.

[16]

Li, D. Y.; Tang, L. H.; Wang, J. J.; Liu, X. J.; Ying, Y. B. Multidimensional SERS barcodes on flexible patterned plasmonic metafilm for anticounterfeiting applications. Adv. Optical Mater. 2016, 4, 1475–1480.

[17]

Feng, J. G.; Wen, W.; Wei, X.; Jiang, X. Y.; Cao, M. Y.; Wang, X. D.; Zhang, X. Q.; Jiang, L.; Wu, Y. C. Random organic nanolaser arrays for cryptographic primitives. Adv. Mater. 2019, 31, 1807880.

[18]

Chen, X. L.; Wang, K. Y.; Shi, B. R.; Liu, T. H.; Chen, R. M.; Zhang, M. Y.; Wen, W. J.; Xing, G. C.; Wu, J. B. All-inorganic perovskite nanorod arrays with spatially randomly distributed lasing modes for all-photonic cryptographic primitives. ACS Appl. Mater. Interfaces 2021, 13, 30891–30901.

[19]

Hill, M. T.; Gather, M. C. Advances in small lasers. Nat. Photon. 2014, 8, 908–918.

[20]

Liu, H.; Yu, H. R.; Dai, L.; Li, Z.; Chen, J. J. Low-threshold and narrow-linewidth perovskite microlasers pumped by a localized waveguide source. Nanophotonics 2021, 10, 3477–3485.

[21]

Ge, L.; Cao, H.; Stone, A. D. Condensation of thresholds in multimode microlasers. Phys. Rev. A 2017, 95, 023842.

[22]

Jiang, L. D.; Shi, L. L.; Huang, D. M.; Luo, J.; Gao, Q. R.; Lan, T. Y.; Bai, M. X.; Li, J. L.; Dang, L. Y.; Huang, L. G. et al. Control of polarization switching in a VCSEL via resonant feedback from a whispering-gallery-mode cavity. Opt. Lett. 2022, 47, 862–865.

[23]

Chen, F.; Xu, C. X.; Xu, Q. Y.; Zhu, Z.; Qin, F. F.; Manohari, A. G.; Zhu, Y. Z. Lasing mode evolution and regulation of the perovskite CH3NH3PbBr3. J. Mater. Chem. C, 2017, 5, 9238–9241.

[24]

Rashidi, M.; Haggren, T.; Su, Z. C.; Jagadish, C.; Mokkapati, S.; Tan, H. H. Managing resonant and nonresonant lasing modes in GaAs nanowire random lasers. Nano Lett. 2021, 21, 3901–3907.

[25]

Zhu, H. M.; Fu, Y. P.; Meng, F.; Wu, X. X.; Gong, Z. Z.; Ding, Q.; Gustafsson, M. V.; Trinh, M. T.; Jin, S.; Zhu, X. Y. Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors. Nat. Mater. 2015, 14, 636–642.

[26]

Triandaf, I.; Schwartz, I. B. Quality Factor Control in a lasing microcavity model. Phys. Rev. E 2000, 61, 3601–3609.

[27]

Jin, L. M.; Chen, X.; Wu, Y. K.; Ai, X. Z.; Yang, X. L.; Xiao, S. M.; Song, Q. H. Dual-wavelength switchable single-mode lasing from a lanthanide-doped resonator. Nat. Commun. 2022, 13, 1727.

[28]
Zhang, H. H.; Liao, Q.; Wu, Y. S.; Zhang, Z. Y.; Gao, Q. G.; Liu, P.; Li, M. L.; Yao, J. N.; Fu, H. B. 2D Ruddlesden-Popper perovskites microring laser array. Adv. Mater. 2018, 30, 1706186.
[29]

Shi, Z. F.; Zhang, F.; Yan, J. J.; Zhang, Y.; Chen, X.; Chen, S.; Wu, D.; Li, X. J.; Zhang, Y.; Shan, C. X. Robust frequency-upconversion lasing operated at 400 K from inorganic perovskites microcavity. Nano Res. 2022, 15, 492–501.

[30]

Zhang, Q.; Ha, S. T.; Liu, X. F.; Sum, T. C.; Xiong, Q. H. Room-temperature near-infrared high-Q perovskite whispering-gallery planar nanolasers. Nano Lett. 2014, 14, 5995–6001.

[31]

Zhang, L.; Zhang, J. S.; Shang, Q. Y.; Song, J. P.; Li, C.; Du, W. N.; Chen, S. L.; Liu, X. F.; Zou, B. S.; Gao, P. et al. Ultrafast antisolvent growth of single-crystalline CsPbCl3 microcavity for low-threshold room temperature blue lasing. ACS Appl. Mater. Interfaces 2022, 14, 21356–21362.

[32]

Lin, G. P.; Coillet, A.; Chembo, Y. K. Nonlinear photonics with high-Q whispering-gallery-mode resonators. Adv. Opt. Photon. 2017, 9, 828–890.

[33]

Wei, G. Q.; Wang, X. D.; Liao, L. S. Recent advances in organic whispering-gallery mode lasers. Laser Photon. Rev. 2020, 14, 2000257.

[34]

Hu, B. L.; Zhang, Z. W.; Zhang, H. X.; Zheng, L. Y.; Xiong, W.; Yue, Z. C.; Wang, X. Y.; Xu, J. Y.; Cheng, Y.; Liu, X. J. et al. Non-Hermitian topological whispering gallery. Nature 2021, 597, 655–659.

[35]

Yang, S. C.; Wang, Y.; Sun, H. D. Advances and prospects for whispering gallery mode microcavities. Adv. Opt. Mater. 2015, 3, 1136–1162.

[36]

Lam, C. C.; Leung, P. T.; Young, K. Explicit asymptotic formulas for the positions, widths, and strengths of resonances in mie scattering. J. Opt. Soc. Am. B 1992, 9, 1585–1592.

[37]

Vollmer, F.; Arnold, S. Whispering-gallery-mode biosensing: Label-free detection down to single molecules. Nat. Methods 2008, 5, 591–596.

[38]

Yu, X. C.; Tang, S. J.; Liu, W. J.; Xu, Y. L.; Gong, Q. H.; Chen, Y. L.; Xiao, Y. F. Single-molecule optofluidic microsensor with interface whispering gallery modes. Proc. Natl. Acad. Sci. USA 2022, 119, e2108678119.

[39]

Shao, L. B.; Jiang, X. F.; Yu, X. C.; Li, B. B.; Clements, W. R.; Vollmer, F.; Wang, W.; Xiao, Y. F.; Gong, Q. H. Detection of single nanoparticles and lentiviruses using microcavity resonance broadening. Adv. Mater. 2013, 25, 5616–5620.

[40]

Noto, M.; Keng, D.; Teraoka, I.; Arnold, S. Detection of protein orientation on the silica microsphere surface using transverse electric/transverse magnetic whispering gallery modes. Biophys. J. 2007, 92, 4466–4472.

[41]

Foreman, M. R.; Swaim, J. D.; Vollmer, F. Whispering gallery mode sensors. Adv. Opt. Photon. 2015, 7, 168–240.

[42]

Ge, K.; Guo, D.; Niu, B.; Xu, Z. Y.; Ruan, J.; Zhai, T. R. Pump-controlled RGB single-mode polymer lasers based on a hybrid 2d-3d μ-cavity for temperature sensing. Nanophotonics 2021, 10, 4591–4599.

[43]

Fan, Y. Q.; Zhang, C. H.; Gao, Z. H.; Zhou, W.; Hou, Y.; Zhou, Z. H.; Yao, J. N.; Zhao, Y. S. Randomly induced phase transformation in silk protein-based microlaser arrays for anticounterfeiting. Adv. Mater. 2021, 33, 2102586.

[44]

Wang, K.; Liang, J.; Chen, R.; Gao, Z. H.; Zhang, C.; Yan, Y. L.; Yao, J. N.; Zhao, Y. S. Geometry-programmable perovskite microlaser patterns for two-dimensional optical encryption. Nano Lett. 2021, 21, 6792–6799.

[45]

Gao, Z. H.; Wang, K.; Yan, Y. L.; Yao, J. N.; Zhao, Y. S. Smart responsive organic microlasers with multiple emission states for high-security optical encryption. Nat. Sci. Rev. 2021, 8, nwaa162.

[46]

Yang, S. C.; Eugene, T. Y. K.; Wang, Y.; Zhao, X.; Demir, H. V.; Sun, H. D. Wavelength tuning of the spirally drawn whispering gallery mode microfiber lasers and the perspectives for sensing applications. Opt. Express 2017, 25, 2618–2626.

[47]

Ta, V. D.; Chen, R.; Ma, L.; Ying, Y. J.; Sun, H. D. Whispering gallery mode microlasers and refractive index sensing based on single polymer fiber. Laser Photon. Rev. 2013, 7, 133–139.

[48]

Ruan, J.; Guo, D.; Niu, B.; Ge, K.; Zhai, T. R. Whispering-gallery-mode full-color laser textiles and their anticounterfeiting applications. NPG Asia Mater. 2022, 14, 62.

[49]

Li, B. B.; Wang, Q. Y.; Xiao, Y. F.; Jiang, X. F.; Li, Y.; Xiao, L. X.; Gong, Q. H. On chip, high-sensitivity thermal sensor based on high-Q polydimethylsiloxane-coated microresonator. Appl. Phys. Lett. 2010, 96, 251109.

[50]

Wang, X. D.; Liao, Q.; Li, H.; Bai, S. M.; Wu, Y. S.; Lu, X. M.; Hu, H. Y.; Shi, Q.; Fu, H. B. Near-infrared lasing from small-molecule organic hemispheres. J. Am. Chem. Soc. 2015, 137, 9289–9295.

[51]

Zhang, Y. X.; Pu, X. Y.; Feng, L.; Han, D. Y.; Ren, Y. T. Polarization characteristics of whispering-gallery-mode fiber lasers based on evanescent-wave-coupled gain. Opt. Express 2013, 21, 12617–12628.

[52]

Yang, X. F.; Lyu, Z. Y.; Dong, H.; Sun, L. D.; Yan, C. H. Lanthanide upconverted microlasing: Microlasing spanning full visible spectrum to near-infrared under low power, CW pumping. Small 2021, 17, 2103140.

Nano Research
Pages 10100-10107
Cite this article:
Ruan J, Guo D, Ge K, et al. Printable microlaser arrays with programmable modes for information encryption. Nano Research, 2023, 16(7): 10100-10107. https://doi.org/10.1007/s12274-023-5709-8
Topics:

1144

Views

4

Crossref

6

Web of Science

5

Scopus

1

CSCD

Altmetrics

Received: 12 February 2023
Revised: 28 March 2023
Accepted: 05 April 2023
Published: 20 June 2023
© Tsinghua University Press 2023
Return