AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Interlayer engineering in 3D graphene skeleton realizing tunable electronic properties at a highly controllable level for piezoresistive sensors

Xunxiang Hu1Lingling Tan1Xianzhang Wu1( )Jinqing Wang2,3( )
College of Material Science and Engineering, Hunan Province Key Laboratory of Materials Surface & Interface Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China
State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
Show Author Information

Graphical Abstract

A novel approach based on interlayer engineering to covalently functionalize graphene oxide (GO) nanosheets with varied molecular lengths of aliphatic amines and π-electronic donors of aromatic amines is demonstrated, which brings about an unprecedented class of three-dimensional (3D) graphene with highly adjustable electronic properties.

Abstract

Three-dimensional (3D) graphene is a promising active component for various engineering fields, but its performance is limited by the hidebound electrical conductivity levels and hindered electrical transport. Here we present a novel approach based on interlayer engineering, in which graphene oxide (GO) nanosheets are covalently functionalized with varied molecular lengths of diamine molecules. This has led to the creation of an unprecedented class of 3D graphene with highly adjustable electronic properties. Theoretical calculations and experimental results demonstrate that ethylenediamine, with its small diameter acting as a molecular bridge for facilitating electron transport, has the potential to significantly improve the electrical conductivity of 3D graphene. In contrast, butylene diamine, with its larger diameter, has a reverse effect due to the enlarged spacing of the graphene interlayers, resulting in conductive degradation. More importantly, the moderate conductive level of 3D graphene can be achieved by combining the interlayer spacing expansion effect and the π-electronic donor ability of aromatic amines. The resulting 3D graphene exhibits highly tunable electronic properties, which can be easily adjusted in a wide range of 2.56–6.61 S·cm−1 compared to pristine GO foam (4.20 S·cm−1). This opens up new possibilities for its use as an active material in a piezoresistive sensor, as it offers remarkable monitoring abilities.

Electronic Supplementary Material

Video
12274_2023_5710_MOESM4_ESM.avi
12274_2023_5710_MOESM3_ESM.avi
12274_2023_5710_MOESM5_ESM.avi
12274_2023_5710_MOESM6_ESM.avi
Download File(s)
12274_2023_5710_MOESM1_ESM.pdf (1.3 MB)
12274_2023_5710_MOESM2_ESM.pdf (6.6 MB)

References

[1]

Jia, Y. R.; Zhang, J.; Kong, D. B.; Zhang, C.; Han, D. L.; Han, J. W.; Tao, Y.; Lv, W.; Yang, Q. H. Practical graphene technologies for electrochemical energy storage. Adv. Funct. Mater. 2022, 32, 2204272.

[2]

Liang, X. P.; Zhu, M. J.; Li, H. F.; Dou, J. X.; Jian, M. Q.; Xia, K. L.; Li, S.; Zhang, Y. Y. Hydrophilic, breathable, and washable graphene decorated textile assisted by silk sericin for integrated multimodal smart wearables. Adv. Funct. Mater. 2022, 32, 2200162.

[3]

You, X.; Yang, J. S.; Huang, K.; Wang, M. M.; Zhang, X. Y.; Dong, S. M. Multifunctional silicon carbide matrix composites optimized by three-dimensional graphene scaffolds. Carbon 2019, 155, 215–222.

[4]

Seraji, S. M.; Jin, X.; Yi, Z. F.; Feng, C. F.; Salim, N. V. Ultralight porous poly (vinylidene fluoride)-graphene nanocomposites with compressive sensing properties. Nano Res. 2021, 14, 2620–2629.

[5]

Xia, S.; Wang, M.; Gao, G. H. Preparation and application of graphene-based wearable sensors. Nano Res. 2022, 15, 9850–9865.

[6]

Alkhouzaam, A.; Qiblawey, H.; Khraisheh, M.; Atieh, M.; Al-Ghouti, M. Synthesis of graphene oxides particle of high oxidation degree using a modified hummers method. Ceram. Int. 2020, 46, 23997–24007.

[7]

Thomas, J. O.; Limburg, B.; Sowa, J. K.; Willick, K.; Baugh, J.; Briggs, G. A. D.; Gauger, E. M.; Anderson, H. L.; Mol, J. A. Understanding resonant charge transport through weakly coupled single-molecule junctions. Nat. Commun. 2019, 10, 4628.

[8]

Jeong, S.; Yang, S.; Kim, B. G.; Lee, H. J.; Bae, J. J.; Kim, J. H.; Kim, J. M.; Lee, W.; Hwang, J. Y.; Choi, S. et al. Highly conductive quasi-defect-free reduced graphene oxide for qualitative scalable production. Carbon 2023, 203, 221–229.

[9]

Al-Gaashani, R.; Najjar, A.; Zakaria, Y.; Mansour, S.; Atieh, M. A. XPS and structural studies of high quality graphene oxide and reduced graphene oxide prepared by different chemical oxidation methods. Ceram. Int. 2019, 45, 14439–14448.

[10]

Huang, X. M.; Liu, L. Z.; Zhou, S.; Zhao, J. J. Physical properties and device applications of graphene oxide. Front. Phys. 2020, 15, 33301.

[11]

Jing, J. Y.; Qian, X. D.; Si, Y.; Liu, G. L.; Shi, C. L. Recent advances in the synthesis and application of three-dimensional graphene-based aerogels. Molecules 2022, 27, 924.

[12]

Tabandeh-Khorshid, M.; Kumar, A.; Omrani, E.; Kim, C.; Rohatgi, P. Synthesis, characterization, and properties of graphene reinforced metal-matrix nanocomposites. Compos. Part B: Eng. 2020, 183, 107664.

[13]

Mallada, B.; Edalatmanesh, S.; Lazar, P.; Redondo, J.; Gallardo, A.; Zbořil, R.; Jelínek, P.; Švec, M.; de la Torre, B. Atomic-scale charge distribution mapping of single substitutional p- and n-type dopants in graphene. ACS Sustainable Chem. Eng. 2020, 8, 3437–3444.

[14]

Teshima, T. F.; Henderson, C. S.; Takamura, M.; Ogawa, Y.; Wang, S. N.; Kashimura, Y.; Sasaki, S.; Goto, T.; Nakashima, H.; Ueno, Y. Self-folded three-dimensional graphene with a tunable shape and conductivity. Nano Lett. 2019, 19, 461–470.

[15]

Irfan, M. S.; Ali, M. A.; Khan, T.; Anwer, S.; Liao, K.; Umer, R. MXene and graphene coated multifunctional fiber reinforced aerospace composites with sensing and EMI shielding abilities. Compos. Part A: Appl. Sci. Manuf. 2023, 165, 107351.

[16]

Deng, Q. H.; Yang, Y.; Qu, S. Y.; Wang, W. J.; Zhang, Y. K.; Ma, X. Y.; Yan, W. W.; Zhang, Y. W. Electron structure and reaction pathway regulation on porous cobalt-doped CeO2/graphene aerogel: A free-standing cathode for flexible and advanced Li-CO2 batteries. Energy Storage Mater. 2021, 42, 484–492.

[17]

Cheng, R.; Zeng, J. S.; Wang, B.; Li, J. P.; Cheng, Z.; Xu, J.; Gao, W. H.; Chen, K. F. Ultralight, flexible and conductive silver nanowire/nanofibrillated cellulose aerogel for multifunctional strain sensor. Chem. Eng. J. 2021, 424, 130565.

[18]

Afroze, J. D.; Tong, L. Y.; Abden, M. J.; Yuan, Z. W.; Chen, Y. Hierarchical honeycomb graphene aerogels reinforced by carbon nanotubes with multifunctional mechanical and electrical properties. Carbon 2021, 175, 312–321.

[19]

Jiang, X. F.; Xu, C. Y.; Gao, T.; Bando, Y.; Golberg, D.; Dai, P. C.; Hu, M.; Ma, R. Z.; Hu, Z.; Wang, X. B. Flexible conductive polymer composite materials based on strutted graphene foam. Compos. Commun. 2021, 25, 100757.

[20]

Chen, Z.; Jin, L.; Hao, W.; Ren, W.; Cheng, H. M. Synthesis and applications of three-dimensional graphene network structures. Mater. Today Nano. 2019, 5, 100027.

[21]

Abdullah, N. R.; Rashid, H. O.; Tang, C. S.; Manolescu, A.; Gudmundsson, V. Role of interlayer spacing on electronic, thermal and optical properties of BN-codoped bilayer graphene: Influence of the interlayer and the induced dipole-dipole interactions. J. Phys. Chem. Solids 2021, 155, 110095.

[22]

Wen, M. J.; Tadmor, E. B. Hybrid neural network potential for multilayer graphene. Phys. Rev. B 2019, 100, 195419.

[23]

Ludwig, T.; Je, M.; Choi, H.; Fischer, T.; Roitsch, S.; Müller, R.; Mane, R. S.; Kim, K. H.; Mathur, S. Boosting nitrogen-doping and controlling interlayer spacing in pre-reduced graphene oxides. Nano Energy 2020, 78, 105286.

[24]

Wang, Y.; Li, S. S.; Yang, H. Y.; Luo, J. Progress in the functional modification of graphene/graphene oxide: A review. RSC Adv. 2020, 10, 15328–15345.

[25]

Wu, M. M.; Geng, H. Y.; Hu, Y. J.; Ma, H. Y.; Yang, C.; Chen, H. W.; Wen, Y. Y.; Cheng, H. H.; Li, C.; Liu, F. et al. Superelastic graphene aerogel-based metamaterials. Nat. Commun. 2022, 13, 4561.

[26]

Wang, W. M.; Shi, Y. C.; Zakharov, A. A.; Syväjärvi, M.; Yakimova, R.; Uhrberg, R. I. G.; Sun, J. W. Flat-band electronic structure and interlayer spacing influence in rhombohedral four-layer graphene. Nano Lett. 2018, 18, 5862–5866.

[27]

Kumar, S.; Parekh, S. H. Linking graphene-based material physicochemical properties with molecular adsorption, structure and cell fate. Commun. Chem. 2020, 3, 8.

[28]

Du, Q.; Faber, V.; Gunzburger, M. Centroidal voronoi tessellations: Applications and algorithms. SIAM Rev. 1999, 41, 637–676.

[29]

Momma, K.; Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Cryst. 2011, 44, 1272–1276.

[30]

Yao, B. W.; Chen, J.; Huang, L.; Zhou, Q. Q.; Shi, G. Q. Base-induced liquid crystals of graphene oxide for preparing elastic graphene foams with long-range ordered microstructures. Adv. Mater. 2016, 28, 1623–1629.

[31]

Huang, H. H.; De Silva, K. K. H.; Kumara, G. R. A.; Yoshimura, M. Structural evolution of hydrothermally derived reduced graphene oxide. Sci. Rep. 2018, 8, 6849.

[32]

Mantina, M.; Chamberlin, A. C.; Valero, R.; Cramer, C. J.; Truhlar, D. G. Consistent van der Waals radii for the whole main group. J. Phys. Chem. A 2009, 113, 5806–5812.

[33]

Lin, Y. H.; Lee, T. C.; Hsiao, Y. S.; Lin, W. K.; Whang, W. T.; Chen, C. H. Facile synthesis of diamino-modified graphene/polyaniline semi-interpenetrating networks with practical high thermoelectric performance. ACS Appl. Mater. Interfaces 2018, 10, 4946–4952.

[34]

Min, C. Y.; Liu, D. D.; Qian, J. M.; He, Z. B.; Jia, W.; Song, H. J.; Guo, L. High mechanical and tribological performance polyimide nanocomposites using amine-functionalized graphene nanosheets. Tribol. Int. 2019, 131, 1–10.

[35]

Quan, L.; Zhang, H. Y.; Wei, H. J.; Li, Y. Q.; Park, S. O.; Hwang, D. Y.; Tian, Y.; Huang, M.; Wang, C. H.; Wang, M. H. et al. The electromagnetic absorption of a Na-ethylenediamine graphite intercalation compound. ACS Appl. Mater. Interfaces 2020, 12, 16841–16848.

[36]

Ju, H.; Duan, J. Z.; Lu, H. T.; Xu, W. H. Cross-linking with diamine monomers to prepare graphene oxide composite membranes with varying d-spacing for enhanced desalination properties. Front. Chem. 2021, 9, 779304.

[37]

Wan, S. J.; Fang, S. L.; Jiang, L.; Cheng, Q. F.; Baughman, R. H. Strong, conductive, foldable graphene sheets by sequential ionic and π bridging. Adv. Mater. 2018, 30, 1802733.

[38]
Wang, H. T.; Mi, X. Y.; Li, Y.; Zhan, S. H. 3D graphene-based macrostructures for water treatment. Adv. Mater. 2020, 32, 1806843.
[39]

Cao, Y.; Park, J. M.; Watanabe, K.; Taniguchi, T.; Jarillo-Herrero, P. Pauli-limit violation and re-entrant superconductivity in moiré graphene. Nature 2021, 595, 526–531.

[40]

Zhang, W.; Huang, Q. B.; Liu, S.; Zhang, M. C.; Liu, G. P.; Ma, Z. L.; Jin, W. Q. Graphene oxide membrane regulated by surface charges and interlayer channels for selective transport of monovalent ions over divalent ions. Sep. Purif. Technol. 2022, 291, 120938.

[41]

Zhu, X. Y.; Yang, C.; Wu, P. W.; Ma, Z. Q.; Shang, Y. Y.; Bai, G. Z.; Liu, X. Y.; Chang, G.; Li, N.; Dai, J. J. et al. Precise control of versatile microstructure and properties of graphene aerogel via freezing manipulation. Nanoscale 2020, 12, 4882–4894.

[42]

Wu, X. Z.; Li, Z. P.; Zhu, Y.; Wang, J. Q.; Yang, S. R. Ultralight GO-hybridized CNTs aerogels with enhanced electronic and mechanical properties for piezoresistive sensors. ACS Appl. Mater. Interfaces 2021, 13, 26352–26361.

[43]

Yang, Y. J.; Liu, M. B.; Zhou, S. Q.; Ren, W. J.; Zhou, Q. H.; Zhang, W. Strengthening behaviour of continuous graphene network in metal matrix composites. Carbon 2021, 182, 825–836.

[44]

Nautiyal, P.; Boesl, B.; Agarwal, A. The mechanics of energy dissipation in a three-dimensional graphene foam with macroporous architecture. Carbon 2018, 132, 59–64.

[45]

Sun, S. B.; Liu, Y. Q.; Chang, X. T.; Jiang, Y. C.; Wang, D. S.; Tang, C. J.; He, S. Y.; Wang, M. W.; Guo, L.; Gao, Y. A wearable, waterproof, and highly sensitive strain sensor based on three-dimensional graphene/carbon black/Ni sponge for wirelessly monitoring human motions. J. Mater. Chem. C 2020, 8, 2074–2085.

[46]

Luo, Z. W.; Hu, X. T.; Tian, X. Y.; Luo, C.; Xu, H. J.; Li, Q. L.; Li, Q. H.; Zhang, J.; Qiao, F.; Wu, X. et al. Structure–property relationships in graphene-based strain and pressure sensors for potential artificial intelligence applications. Sensors 2019, 19, 1250.

[47]

Liu, X. B.; Liang, X. W.; Lin, Z. Q.; Lei, Z. M.; Xiong, Y. X.; Hu, Y. G.; Zhu, P. L.; Sun, R.; Wong, C. P. Highly sensitive and stretchable strain sensor based on a synergistic hybrid conductive network. ACS Appl. Mater. Interfaces 2020, 12, 42420–42429.

Nano Research
Pages 8512-8521
Cite this article:
Hu X, Tan L, Wu X, et al. Interlayer engineering in 3D graphene skeleton realizing tunable electronic properties at a highly controllable level for piezoresistive sensors. Nano Research, 2023, 16(7): 8512-8521. https://doi.org/10.1007/s12274-023-5710-2
Topics:

1002

Views

4

Crossref

3

Web of Science

4

Scopus

0

CSCD

Altmetrics

Received: 13 February 2023
Revised: 27 March 2023
Accepted: 05 April 2023
Published: 20 May 2023
© Tsinghua University Press 2023
Return