AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

High EMI shielding effectiveness and superhydrophobic properties based on step-wise asymmetric structure constructed by one-step method

Kang Yan1,2Changmei Wu1,2Lan Xie1,2,3,4( )Lingjun Zeng1,2Yi Jiang1,2Zhiqiang Jiang1,2Guojun Chang1,2Bai Xue1,2,3,4( )Qiang Zheng5
Department of Polymer Materials and Engineering, College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China
State Key Laboratory of Public Big Data, Guizhou University, Guiyang 550025, China
National Engineering Research Center for Compounding and Modification of Polymer Materials, Guiyang 550014, China
National and Local Joint Engineering Research Center for Functional Polymer Membrane Materials and Membrane Processes, Guiyang 550014, China
Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
Show Author Information

Graphical Abstract

Environmentally friendly electromagnetic interference (EMI) shielding silver nanowires (AgNWs)/stereo-complexed crystalline poly(lactic acid) (SC-PLA)/ferroferric oxide (Fe3O4) composites with step-wise asymmetric structures were prepared by a facile one-step non-solvent induced phase separation method.

Abstract

It is of significance to prepare biodegradable electromagnetic interference (EMI) shielding materials with high EMI shielding effectiveness (SE) in order to solve electromagnetic and environmental pollution problems. In this paper, environmentally friendly EMI shielding silver nanowires (AgNWs)/poly(L-lactic acid) (PLLA)/poly(D-lactic acid) (PDLA)/ferroferric oxide (Fe3O4) composites with step-wise asymmetric structures were prepared by a facile one-step non-solvent-induced phase separation method. The conductive AgNW network was constructed at a low mass fraction of 5 wt.% on the surface of stereo-complexed crystalline poly(lactic acid) (SC-PLA) film (1.08 × 104 S/m). Moreover, magnetic Fe3O4 is mainly distributed in the skeleton of porous SC-PLA film. Due to the synergistic effect of AgNWs and Fe3O4, the EMI SE of SC-PLA films reaches up to 50.3 dB. Interestingly, SC-PLA film modified with triethoxy-1H,1H,2H,2H-tridecafluoro-n-octylsilane (TTO) demonstrates an outstanding water contact angle of about 150.2° compared with the pure PLLA film (134.7°), stemming from the synergistic effect of denser SC-PLA nano-protrusions and low-surface-energy TTO. Thus, we successfully fabricated the high EMI shielding SC-PLA film with wonderful superhydrophobicity, which extends the application performance and service life of portable electronics in moist environments.

Electronic Supplementary Material

Download File(s)
12274_2023_5713_MOESM1_ESM.pdf (1.3 MB)

References

[1]

Chen, Y. M.; Luo, H.; Guo, H. T.; Liu, K. M.; Mei, C. T.; Li, Y.; Duan, G. G.; He, S. J.; Han, J. Q.; Zheng, J. J. et al. Anisotropic cellulose nanofibril composite sponges for electromagnetic interference shielding with low reflection loss. Carbohydr. Polym. 2022, 276, 118799.

[2]

Kong, D. Y.; Li, J.; Guo, A. R.; Xiao, X. L. High temperature electromagnetic shielding shape memory polymer composite. Chem. Eng. J. 2021, 408, 127365.

[3]

Yang, J. M.; Liao, X.; Li, J. S.; He, G. J.; Zhang, Y.; Tang, W. Y.; Wang, G.; Li, G. X. Light-weight and flexible silicone rubber/MWCNTs/Fe3O4 nanocomposite foams for efficient electromagnetic interference shielding and microwave absorption. Compos. Sci. Technol. 2019, 181, 107670.

[4]

Duan, H. J.; He, P. Y.; Zhu, H. X.; Yang, Y. Q.; Zhao, G. Z.; Liu, Y. Q. Constructing 3D carbon-metal hybrid conductive network in polymer for ultra-efficient electromagnetic interference shielding. Compos. Part B: Eng. 2021, 212, 108690.

[5]

Zhai, W.; Wang, C. F.; Wang, S.; Li, J. N.; Zhao, Y.; Zhan, P. F.; Dai, K.; Zheng, G. Q.; Liu, C. T.; Shen, C. Y. Ultra-stretchable and multifunctional wearable electronics for superior electromagnetic interference shielding, electrical therapy, and biomotion monitoring. J. Mater. Chem. A 2021, 9, 7238–7247.

[6]

Zhang, Y. L.; Kong, J.; Gu, J. W. New generation electromagnetic materials: Harvesting instead of dissipation solo. Sci. Bull. 2022, 67, 1413–1415.

[7]

Ma, T. B.; Ma, H.; Ruan, K. P.; Shi, X. T.; Qiu, H.; Gao, S. Y.; Gu, J. W. Thermally conductive poly(lactic acid) composites with superior electromagnetic shielding performances via 3D printing technology. Chin. J. Polym. Sci. 2022, 40, 248–255.

[8]
Li, M. K.; Sun, Y. Y.; Feng, D. Y.; Ruan, K. P.; Liu, X.; Gu, J. W. Thermally conductive polyvinyl alcohol composite films via introducing hetero-structured MXene@silver fillers. Nano Res., in press, https://doi.org/10.1007/s12274-023-5594-1.
[9]

Mohan, R. R.; Abhilash, A.; Mani, M.; Varma, S. J.; Jayalekshmi, S. Nano CuO-embedded polyaniline films as efficient broadband electromagnetic shields. Mater. Chem. Phys. 2022, 290, 126647.

[10]

Retailleau, C.; Eddine, J. A.; Ndagijimana, F.; Haddad, F.; Bayard, B.; Sauviac, B.; Alcouffe, P.; Fumagalli, M.; Bounor-Legaré, V.; Serghei, A. Universal behavior for electromagnetic interference shielding effectiveness of polymer based composite materials. Compos. Sci. Technol. 2022, 221, 109351.

[11]

Yao, F. C.; Xie, W. H.; Ma, C.; Wang, D. D.; El-Bahy, Z. M.; Helal, M. H.; Liu, H.; Du, A.; Guo, Z. H.; Gu, H. B. Superb electromagnetic shielding polymer nanocomposites filled with 3-dimensional p-phenylenediamine/aniline copolymer nanofibers@copper foam hybrid nanofillers. Compos. Part B: Eng. 2022, 245, 110236.

[12]

Sun, Z. P.; Shen, B.; Li, Y.; Chen, J. L.; Zheng, W. G. High-performance porous carbon foams via catalytic pyrolysis of modified isocyanate-based polyimide foams for electromagnetic shielding. Nano Res. 2022, 15, 6851–6859.

[13]

Song, P. W.; Liao, X.; Zou, F. F.; Wang, X. H.; Liu, F.; Liu, S. L.; Li, G. X. Frequency-adjustable electromagnetic interference shielding performance of sandwich-structured conductive polymer composites by selective foaming and tunable filler dispersion. Compos. Commun. 2022, 34, 101264.

[14]

Zhang, Y. L.; Ma, Z. L.; Ruan, K. P.; Gu, J. W. Multifunctional Ti3C2Tx-(Fe3O4/polyimide) composite films with Janus structure for outstanding electromagnetic interference shielding and superior visual thermal management. Nano Res. 2022, 15, 5601–5609.

[15]

Yan, D. X.; Pang, H.; Li, B.; Vajtai, R.; Xu, L.; Ren, P. G.; Wang, J. H.; Li, Z. M. Structured reduced graphene oxide/polymer composites for ultra-efficient electromagnetic interference shielding. Adv. Funct. Mater. 2015, 25, 559–566.

[16]

Xue, F.; Qi, X. D.; Huang, T.; Tang, C. Y.; Zhang, N.; Wang, Y. Preparation and application of three-dimensional filler network towards organic phase change materials with high performance and multi-functions. Chem. Eng. J. 2021, 419, 129620.

[17]

Zhang, X. Z.; Chen, X.; Qu, Y. L.; Wu, Y. N.; Wu, K.; Deng, H.; Fu, Q. Fabricating high performance multi-functional hygroelectric generator through a biomimic approach. Nano Energy 2022, 98, 107241.

[18]

Zhang, K.; Yu, H. O.; Yu, K. X.; Gao, Y.; Wang, M.; Li, J.; Guo, S. Y. A facile approach to constructing efficiently segregated conductive networks in poly(lactic acid)/silver nanocomposites via silver plating on microfibers for electromagnetic interference shielding. Compos. Sci. Technol. 2018, 156, 136–143.

[19]

Xue, B.; Li, Y.; Cheng, Z. L.; Yang, S. D.; Xie, L.; Qin, S. H.; Zheng, Q. Directional electromagnetic interference shielding based on step-wise asymmetric conductive networks. Nano-Micro Lett. 2022, 14, 16.

[20]

Tang, Z. H.; Yao, D. J.; Du, D. H.; Ouyang, J. Y. Highly machine-washable e-textiles with high strain sensitivity and high thermal conduction. J. Mater. Chem. C 2020, 8, 2741–2748.

[21]

Rao, J.; Ding, Q. Q.; Lv, Z. W.; Sun, D.; Lü, B. Z.; Chen, G. G.; Guan, Y.; Li, M. F.; Peng, F. Strong holocellulose-based nanopaper with a sandwich-like structure for effective electromagnetic shielding. ACS Sustainable Chem. Eng. 2022, 10, 11396–11405.

[22]

Jia, X. C.; Shen, B.; Zhang, L. H.; Zheng, W. G. Waterproof MXene-decorated wood-pulp fabrics for high-efficiency electromagnetic interference shielding and Joule heating. Compos. Part B: Eng. 2020, 198, 108250.

[23]

Sun, X.; Xue, B.; Yang, S. D.; Huo, K. W.; Liao, X. Y.; Li, X. J.; Xie, L.; Qin, S. H.; Zheng, Q. Structural conversion of PLLA/ZnO composites facilitated by interfacial crystallization to potential application in oil–water separation. Appl. Surf. Sci. 2020, 517, 146135.

[24]

Sun, X.; Yang, S. D.; Xue, B.; Huo, K. W.; Li, X. J.; Tian, Y. Z.; Liao, X. Y.; Xie, L.; Qin, S. H.; Xu, K. H. et al. Super-hydrophobic poly (lactic acid) by controlling the hierarchical structure and polymorphic transformation. Chem. Eng. J. 2020, 397, 125297.

[25]

Liang, C. B.; Ruan, K. P.; Zhang, Y. L.; Gu, J. W. Multifunctional flexible electromagnetic interference shielding silver nanowires/cellulose films with excellent thermal management and Joule heating performances. ACS Appl. Mater. Interfaces 2020, 12, 18023–18031.

[26]

Doganay, D.; Coskun, S.; Kaynak, C.; Unalan, H. E. Electrical, mechanical, and thermal properties of aligned silver nanowire/polylactide nanocomposite films. Compos. Part B: Eng. 2016, 99, 288–296.

[27]

He, Y. J.; Shao, Y. W.; Xiao, Y. Y.; Yang, J. H.; Qi, X. D.; Wang, Y. Multifunctional phase change composites based on elastic MXene/silver nanowire sponges for excellent thermal/solar/electric energy storage, shape memory, and adjustable electromagnetic interference shielding functions. ACS Appl. Mater. Interfaces 2022, 14, 6057–6070.

[28]

Sheng, A.; Ren, W.; Yang, Y. Q.; Yan, D. X.; Duan, H. J.; Zhao, G. Z.; Liu, Y. Q.; Li, Z. M. Multilayer WPU conductive composites with controllable electro-magnetic gradient for absorption-dominated electromagnetic interference shielding. Compos. Part A: Appl. Sci. Manuf. 2020, 129, 105692.

[29]

Zhao, G. J.; Cao, X. Y.; Zhang, Q.; Deng, H.; Fu, Q. A novel interpenetrating segregated functional filler network structure for ultra-high electrical conductivity and efficient EMI shielding in CPCs containing carbon nanotubes. Mater. Today Phys. 2021, 21, 100483.

[30]

Wang, Y. L.; Jia, Y. Y.; Zhou, Y. J.; Wang, Y.; Zheng, G. Q.; Dai, K.; Liu, C. T.; Shen, C. Y. Ultra-stretchable, sensitive, and durable strain sensors based on polydopamine encapsulated carbon nanotubes/elastic bands. J. Mater. Chem. C 2018, 6, 8160–8170.

[31]

Sun, X.; Yang, S. D.; Xue, B.; Li, J. L.; Wang, Y. W.; Gao, C. T.; Qin, S. H. Controllable surface morphology transition from inter-connected pores to flower-like structures for super-hydrophobic poly (L-lactic acid) films. Surf. Coat. Technol. 2021, 412, 127032.

[32]

Guo, Y. F.; Sun, X.; Xue, B.; Zhou, Y.; Xie, L.; Zheng, Q. Carbon quantum dots-driven surface morphology transformation towards superhydrophobic poly(lactic acid) film. Colloid Surface A 2023, 656, 130547.

[33]

Sun, X.; Xue, B.; Yang, S. D.; Guo, Y. F.; Qin, S. H. Controllable surficial and internal hierarchical structures of porous poly (L-lactic acid) membranes for hydrophobicity and potential application in oil–water separation. Surf. Interfaces 2021, 24, 101147.

[34]

Tang, L.; Tang, Y. S.; Zhang, J. L.; Lin, Y. H.; Kong, J.; Zhou, K.; Gu, J. W. High-strength super-hydrophobic double-layered PBO nanofiber-polytetrafluoroethylene nanocomposite paper for high-performance wave-transparent applications. Sci. Bull. 2022, 67, 2196–2207.

[35]

Gao, A. L.; Zhao, Y. Q.; Yang, Q.; Fu, Y. Y.; Xue, L. X. Facile preparation of patterned petal-like PLA surfaces with tunable water micro-droplet adhesion properties based on stereo-complex co-crystallization from non-solvent induced phase separation processes. J. Mater. Chem. A 2016, 4, 12058–12064.

[36]

Wang, Y. Y.; Zhou, Z. H.; Zhou, C. G.; Sun, W. J.; Gao, J. F.; Dai, K.; Yan, D. X.; Li, Z. M. Lightweight and robust carbon nanotube/polyimide foam for efficient and heat-resistant electromagnetic interference shielding and microwave absorption. ACS Appl. Mater. Interfaces 2020, 12, 8704–8712.

[37]

Zhang, Y. L.; Gu, J. W. A perspective for developing polymer-based electromagnetic interference shielding composites. Nano-Micro Lett. 2022, 14, 89.

[38]

Sawalha, H.; Schroën, K.; Boom, R. Mechanical properties and porosity of polylactide for biomedical applications. J. Appl. Polym. Sci. 2008, 107, 82–93.

[39]

Saeidlou, S.; Huneault, M. A.; Li, H. B.; Sammut, P.; Park, C. B. Evidence of a dual network/spherulitic crystalline morphology in PLA stereocomplexes. Polymer 2012, 53, 5816–5824.

[40]

Hu, J. L.; Tang, Z. H.; Qiu, X. Y.; Pang, X.; Yang, Y. K.; Chen, X. S.; Jing, X. B. Formation of flower- or cake-shaped stereocomplex particles from the stereo multiblock copoly(rac-lactide)s. Biomacromolecules 2005, 6, 2843–2850.

[41]

Li, Y.; Yu, Y. C.; Han, C. Y.; Wang, X. H.; Huang, D. X. Sustainable blends of poly(propylene carbonate) and stereocomplex polylactide with enhanced rheological properties and heat resistance. Chin. J. Polym. Sci. 2020, 38, 1267–1275.

[42]

Herc, A. S.; Lewiński, P.; Kaźmierski, S.; Bojda, J.; Kowalewska, A. Hybrid SC-polylactide/poly(silsesquioxane) blends of improved thermal stability. Thermochim. Acta 2020, 687, 178592.

[43]

Ruan, K. P.; Gu, J. W. Ordered alignment of liquid crystalline graphene fluoride for significantly enhancing thermal conductivities of liquid crystalline polyimide composite films. Macromolecules 2022, 55, 4134–4145.

[44]

Zhang, J.; Li, J. Q.; Wei, Q. Y.; Chen, Y.; Jia, D. Z.; Lin, H.; Zhong, G. J.; Li, Z. M. Light weight, low dielectric constant, super-robust polylactide film based on stress-induced cavitation aided by crystallization. Polymer 2022, 256, 125234.

[45]

Iqbal, A.; Shahzad, F.; Hantanasirisakul, K.; Kim, M. K.; Kwon, J.; Hong, J.; Kim, H.; Kim, D.; Gogotsi, Y.; Koo, C. M. Anomalous absorption of electromagnetic waves by 2D transition metal carbonitride Ti3CNTx (MXene). Science 2020, 369, 446–450.

[46]

Xia, X. F.; Xiao, Q. L. Electromagnetic interference shielding of 2D transition metal carbide (MXene)/metal ion composites. Nanomaterials 2021, 11, 2929.

[47]

Zhang, S. M.; Deng, H.; Zhang, Q.; Fu, Q. Formation of conductive networks with both segregated and double-percolated characteristic in conductive polymer composites with balanced properties. ACS Appl. Mater. Interfaces 2014, 6, 6835–6844.

[48]

Li, Y.; Xu, G. J.; Guo, Y. Q.; Ma, T. B.; Zhong, X.; Zhang, Q. Y.; Gu, J. W. Fabrication, proposed model, and simulation predictions on thermally conductive hybrid cyanate ester composites with boron nitride fillers. Compos. Part A: Appl. Sci. Manuf. 2018, 107, 570–578.

[49]

Zhai, W.; Zhu, J. Z.; Wang, Z. Q.; Zhao, Y.; Zhan, P. F.; Wang, S.; Zheng, G. Q.; Shao, C. G.; Dai, K.; Liu, C. T. et al. Stretchable, sensitive strain sensors with a wide workable range and low detection limit for wearable electronic skins. ACS Appl. Mater. Interfaces 2022, 14, 4562–4570.

[50]

Han, Y. X.; Ruan, K. P.; Gu, J. W. Multifunctional thermally conductive composite films based on fungal tree-like heterostructured silver nanowires@boron nitride nanosheets and aramid nanofibers. Angew. Chem., Int. Ed. 2023, 62, e202216093.

[51]

Yang, W. X.; Zhao, Z. D.; Wu, K.; Huang, R.; Liu, T. Y.; Jiang, H.; Chen, F.; Fu, Q. Ultrathin flexible reduced graphene oxide/cellulose nanofiber composite films with strongly anisotropic thermal conductivity and efficient electromagnetic interference shielding. J. Mater. Chem. C 2017, 5, 3748–3756.

[52]

Xu, Y. D.; Lin, Z. Q.; Yang, Y. Q.; Duan, H. J.; Zhao, G. Z.; Liu, Y. Q.; Hu, Y. G.; Sun, R.; Wong, C. P. Integration of efficient microwave absorption and shielding in a multistage composite foam with progressive conductivity modular design. Mater. Horiz. 2022, 9, 708–719.

[53]

Cao, M. S.; Yang, J.; Song, W. L.; Zhang, D. Q.; Wen, B.; Jin, H. B.; Hou, Z. L.; Yuan, J. Ferroferric oxide/multiwalled carbon nanotube vs polyaniline/ferroferric oxide/multiwalled carbon nanotube multiheterostructures for highly effective microwave absorption. ACS Appl. Mater. Interfaces 2012, 4, 6949–6956.

[54]

Zeng, Z. H.; Chen, M. J.; Jin, H.; Li, W. W.; Xue, X.; Zhou, L. C.; Pei, Y. M.; Zhang, H.; Zhang, Z. Thin and flexible multi-walled carbon nanotube/waterborne polyurethane composites with high-performance electromagnetic interference shielding. Carbon 2016, 96, 768–777.

[55]

Zhan, Z. Y.; Song, Q. C.; Zhou, Z. H.; Lu, C. H. Ultrastrong and conductive MXene/cellulose nanofiber films enhanced by hierarchical nano-architecture and interfacial interaction for flexible electromagnetic interference shielding. J. Mater. Chem. C 2019, 7, 9820–9829.

[56]

Zhang, Y. L.; Ruan, K. P.; Gu, J. W. Flexible sandwich-structured electromagnetic interference shielding nanocomposite films with excellent thermal conductivities. Small 2021, 17, 2101951.

[57]

Wang, M. L.; Zhang, S.; Zhou, Z. H.; Zhu, J. L.; Gao, J. F.; Dai, K.; Huang, H. D.; Li, Z. M. Facile heteroatom doping of biomass-derived carbon aerogels with hierarchically porous architecture and hybrid conductive network: Towards high electromagnetic interference shielding effectiveness and high absorption coefficient. Compos. Part B: Eng. 2021, 224, 109175.

[58]

Jia, L. C.; Yan, D. X.; Cui, C. H.; Jiang, X.; Ji, X.; Li, Z. M. Electrically conductive and electromagnetic interference shielding of polyethylene composites with devisable carbon nanotube networks. J. Mater. Chem. C 2015, 3, 9369–9378.

[59]
Zhang, Y. L.; Ruan, K. P.; Zhou, K.; Gu, J. W. Controlled distributed Ti3C2Tx hollow microspheres on thermally conductive polyimide composite films for excellent electromagnetic interference shielding. Adv. Mater., in press, https://doi.org/10.1002/adma.202211642.
[60]

Jin, L. Y.; Cao, W. J.; Wang, P.; Song, N.; Ding, P. Interconnected MXene/graphene network constructed by soft template for multi-performance improvement of polymer composites. Nano-Micro Lett. 2022, 14, 133.

[61]

Jin, L. Y.; Wang, P.; Cao, W. J.; Song, N.; Ding, P. Isolated solid wall-assisted thermal conductive performance of three-dimensional anisotropic MXene/graphene polymeric composites. ACS Appl. Mater. Interfaces 2022, 14, 1747–1756.

[62]

Wang, W. Y.; Ma, X.; Shao, Y. W.; Qi, X. D.; Yang, J. H.; Wang, Y. Flexible, multifunctional, and thermally conductive nylon/graphene nanoplatelet composite papers with excellent EMI shielding performance, improved hydrophobicity and flame resistance. J. Mater. Chem. A 2021, 9, 5033–5044.

[63]

Nampoothiri, K. M.; Nair, N. R.; John, R. P. An overview of the recent developments in polylactide (PLA) research. Bioresour. Technol. 2010, 101, 8493–8501.

[64]

Sun, X.; Xue, B.; Tian, Y. Z.; Qin, S. H.; Xie, L. 3D porous poly(L-lactic acid) materials with controllable multi-scale microstructures and their potential application in oil–water separation. Appl. Surf. Sci. 2018, 462, 633–640.

[65]

Xie, C. M.; Lu, X.; Han, L.; Xu, J. L.; Wang, Z. M.; Jiang, L. L.; Wang, K. F.; Zhang, H. P.; Ren, F. Z.; Tang, Y. H. Biomimetic mineralized hierarchical graphene oxide/chitosan scaffolds with adsorbability for immobilization of nanoparticles for biomedical applications. ACS Appl. Mater. Interfaces 2016, 8, 1707–1717.

[66]

Xiong, Z.; Lin, H. B.; Zhong, Y.; Qin, Y.; Li, T. T.; Liu, F. Robust superhydrophilic polylactide (PLA) membranes with a TiO2 nano-particle inlaid surface for oil/water separation. J. Mater. Chem. A 2017, 5, 6538–6545.

[67]
Zheng, N.; Liu, J.; Wang, G. Q.; Yao, P.; Dang, L. H.; Liu, Z.; Lu, J. F.; Li, W. G. Robust UV/moisture dual curable PDMS-microcapsule-silica functional material for self-healing, antifouling, and antibacterial applications. Nano Res., in press, https://doi.org/10.1007/s12274-023-5563-8.
Nano Research
Pages 10483-10492
Cite this article:
Yan K, Wu C, Xie L, et al. High EMI shielding effectiveness and superhydrophobic properties based on step-wise asymmetric structure constructed by one-step method. Nano Research, 2023, 16(7): 10483-10492. https://doi.org/10.1007/s12274-023-5713-z
Topics:

937

Views

16

Crossref

13

Web of Science

13

Scopus

0

CSCD

Altmetrics

Received: 09 March 2023
Revised: 03 April 2023
Accepted: 03 April 2023
Published: 29 April 2023
© Tsinghua University Press 2023
Return