Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Bandgap-graded materials present varying spectral responses at different positions, making them possible to be used as an alternative to photoactive materials array in multi-spectral responsive devices, thus miniaturizing the apparatus. However, the preparation of bandgap-graded materials usually requires complicated deposition process. Here we report a facile low-temperature solution process to make films with lateral bandgap gradients, which form spontaneously via self-spreading and interdiffusion of solutions. We show lead halide perovskite films with MAPbCl3-MAPbBr3 and MAPbBr3-MAPbI3 gradients, which exhibit light absorption onsets ranging from 410 to 781 nm. The bandgap-graded films were used to make self-powered multiband photodetectors, which show different spectral responses at different positions without applying bias voltage. Furthermore, self-powered spectrometers were made by using the multiband photodetectors.
Fang, Y. J.; Dong, Q. F.; Shao, Y. C.; Yuan, Y. B.; Huang, J. S. Highly narrowband perovskite single-crystal photodetectors enabled by surface-charge recombination. Nat. Photonics 2015, 9, 679–686.
Lin, Q. Q.; Armin, A.; Burn, P. L.; Meredith, P. Filterless narrowband visible photodetectors. Nat. Photonics 2015, 9, 687–694.
Xu, X. B.; Dong, Y. H.; Zhang, Y. Z.; Han, Z. Y.; Liu, J. X.; Yu, D. J.; Wei, Y.; Zou, Y. S.; Huang, B.; Chen, J. et al. High-definition colorful perovskite narrowband photodetector array enabled by laser-direct-writing. Nano Res. 2022, 15, 5476–5482.
Xie, B. M.; Xie, R. H.; Zhang, K.; Yin, Q. W.; Hu, Z. C.; Yu, G.; Huang, F.; Cao, Y. Self-filtering narrowband high performance organic photodetectors enabled by manipulating localized Frenkel exciton dissociation. Nat. Commun. 2020, 11, 2871.
Li, K. H.; Lu, Y.; Yang, X. K.; Fu, L. C.; He, J. G.; Lin, X. T.; Zheng, J. J.; Lu, S. C.; Chen, C.; Tang, J. Filter-free self-power CdSe/Sb2(S1−x, Sex)3 nearinfrared narrowband detection and imaging. InfoMat 2021, 3, 1145–1153.
Bao, J.; Bawendi, M. G. A colloidal quantum dot spectrometer. Nature 2015, 523, 67–70.
Yuan, S. F.; Naveh, D.; Watanabe, K.; Taniguchi, T.; Xia, F. N. A wavelength-scale black phosphorus spectrometer. Nat. Photonics 2021, 15, 601–607.
Zhu, X. X.; Bian, L. H.; Fu, H.; Wang, L. X.; Zou, B. S.; Dai, Q. H.; Zhang, J.; Zhong, H. Z. Broadband perovskite quantum dot spectrometer beyond human visual resolution. Light Sci. Appl. 2020, 9, 73.
Sobhani, A.; Knight, M. W.; Wang, Y. M.; Zheng, B.; King, N. S.; Brown, L. V.; Fang, Z. Y.; Nordlander, P.; Halas, N. J. Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device. Nat. Commun. 2013, 4, 1643.
Xue, J.; Zhu, Z. F.; Xu, X. B.; Gu, Y.; Wang, S. L.; Xu, L. M.; Zou, Y. S.; Song, J. Z.; Zeng, H. B.; Chen, Q. Narrowband perovskite photodetector-based image array for potential application in artificial vision. Nano Lett. 2018, 18, 7628–7634.
Wang, J.; Xiao, S.; Qian, W.; Zhang, K.; Yu, J.; Xu, X. W.; Wang, G. P.; Zheng, S. Z.; Yang, S. H. Self-driven perovskite narrowband photodetectors with tunable spectral responses. Adv. Mater. 2021, 33, 2005557.
Yang, Z. Y.; Albrow-Owen, T.; Cai, W. W.; Hasan, T. Miniaturization of optical spectrometers. Science 2021, 371, eabe0722.
Hagen, N. A.; Kudenov, M. W. Review of snapshot spectral imaging technologies. Opt. Eng. 2013, 52, 090901.
Ning, C. Z.; Dou, L. T.; Yang, P. D. Bandgap engineering in semiconductor alloy nanomaterials with widely tunable compositions. Nat. Rev. Mater. 2017, 2, 17070.
Xu, H.; Zhu, J. T.; Zou, G. F.; Liu, W.; Li, X.; Li, C. H.; Ryu, G. H.; Xu, W. S.; Han, X. Y.; Guo, Z. X. et al. Spatially bandgap-graded MoS2(1−x)Se2x homojunctions for self-powered visible-near-infrared phototransistors. Nano-Micro Lett. 2020, 12, 26.
Huang, L.; Gao, Q. G.; Sun, L. D.; Dong, H.; Shi, S.; Cai, T.; Liao, Q.; Yan, C. H. Composition-graded cesium lead halide perovskite nanowires with tunable dual-color lasing performance. Adv. Mater. 2018, 30, 1800596.
Lei, Y. S.; Chen, Y. M.; Zhang, R. Q.; Li, Y. H.; Yan, Q. Z.; Lee, S.; Yu, Y. G.; Tsai, H.; Choi, W.; Wang, K. P. et al. A fabrication process for flexible single-crystal perovskite devices. Nature 2020, 583, 790–795.
Gu, F. X.; Yang, Z. Y.; Yu, H. K.; Xu, J. Y.; Wang, P.; Tong, L. M.; Pan, A. L. Spatial bandgap engineering along single alloy nanowires. J. Am. Chem. Soc. 2011, 133, 2037–2039.
Zhuang, X. J.; Ning, C. Z.; Pan, A. L. Composition and bandgap-graded semiconductor alloy nanowires. Adv. Mater. 2012, 24, 13–33.
Yang, Z. Y.; Albrow-Owen, T.; Cui, H. X.; Alexander-Webber, J.; Gu, F. X.; Wang, X. M.; Wu, T. C.; Zhuge, M. H.; Williams, C.; Wang, P. et al. Single-nanowire spectrometers. Science 2019, 365, 1017–1020.
Dunlap-Shohl, W. A.; Zhou, Y. Y.; Padture, N. P.; Mitzi, D. B. Synthetic approaches for halide perovskite thin films. Chem. Rev. 2019, 119, 3193–3295.
Jiang, Q.; Zhao, Y.; Zhang, X. W.; Yang, X. L.; Chen, Y.; Chu, Z. M.; Ye, Q. F.; Li, X. X.; Yin, Z. G.; You, J. B. Surface passivation of perovskite film for efficient solar cells. Nat. Photonics 2019, 13, 460–466.
Bian, H.; Bai, D. L.; Jin, Z. W.; Wang, K.; Liang, L.; Wang, H. R.; Zhang, J. R.; Wang, Q.; Liu, S. Z. Graded bandgap CsPbI2+xBr1−x perovskite solar cells with a stabilized efficiency of 14.4%. Joule 2018, 2, 1500–1510.
Zuo, C. T.; Scully, A. D.; Vak, D.; Tan, W. L.; Jiao, X. C.; McNeill, C. R.; Angmo, D.; Ding, L. M.; Gao, M. Self-assembled 2D perovskite layers for efficient printable solar cells. Adv. Energy Mater. 2019, 9, 1803258.
Zuo, C. T.; Ding, L. M. Drop-casting to make efficient perovskite solar cells under high humidity. Angew. Chem., Int. Ed. 2021, 60, 11242–11246.
Liu, L.; Zuo, C. T.; Ding, L. M. Self-spreading produces highly efficient perovskite solar cells. Nano Energy 2021, 90, 106509.
Xiao, H. R.; Zuo, C. T.; Zhang, L. X.; Zhang, W. H.; Hao, F.; Yi, C. Y.; Liu, F. Y.; Jin, H. L.; Ding, L. M. Efficient inorganic perovskite solar cells made by drop-coating in ambient air. Nano Energy 2023, 106, 108061.
Liu, L.; Xiao, H. R.; Jin, K.; Xiao, Z.; Du, X. Y.; Yan, K. Y.; Hao, F.; Bao, Q. Y.; Yi, C. Y.; Liu, F. Y. et al. 4-Terminal inorganic perovskite/organic tandem solar cells offer 22% efficiency. Nano-Micro Lett. 2023, 5, 23.
Zuo, C. T.; Scully, A. D.; Gao, M. Drop-casting method to screen ruddlesden-popper perovskite formulations for use in solar cells. ACS Appl. Mater. Interfaces 2021, 13, 56217–56225.
Zhang, L. X.; Zuo, C. T.; Ding, L. M. Efficient MAPbI3 solar cells made via drop-coating at room temperature. J. Semicond. 2021, 42, 072201.
Liu, D. Y.; Yang, C. C.; Lunt, R. R. Halide perovskites for selective ultraviolet-harvesting transparent photovoltaics. Joule 2018, 2, 1827–1837.
Noh, J. H.; Im, S. H.; Heo, J. H.; Mandal, T. N.; Seok, S. I. Chemical management for colorful, efficient, and stable inorganic–organic hybrid nanostructured solar cells. Nano Lett. 2013, 13, 1764–1769.
Liu, T. H.; Chen, K.; Hu, Q.; Zhu, R.; Gong, Q. H. Inverted perovskite solar cells: Progresses and perspectives. Adv. Energy Mater. 2016, 6, 1600457.
Wang, S. R.; Guo, H. X.; Wu, Y. Z. Advantages and challenges of self-assembled monolayer as a hole-selective contact for perovskite solar cells. Mater. Futures 2023, 2, 012105.
Mahajan, P.; Padha, B.; Verma, S.; Gupta, V.; Datt, R.; Tsoi, W. C.; Satapathi, S.; Arya, S. Review of current progress in hole-transporting materials for perovskite solar cells. J. Energy Chem. 2022, 68, 330–386.