AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Perovskite films with gradient bandgap for self-powered multiband photodetectors and spectrometers

Chuantian Zuo1,11Lixiu Zhang1Xiyan Pan1He Tian3Keyou Yan4Yuanhang Cheng5Zhiwen Jin6Chenyi Yi7Xiaoliang Zhang8Wu-Qiang Wu9Qinye Bao2( )Liyuan Han10Liming Ding1( )
Center for Excellence in Nanoscience (CAS), Key Laboratory of Nanosystem and Hierarchical Fabrication (CAS), National Center for Nanoscience and Technology, Beijing 100190, China
School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
School of Integrated Circuits, Tsinghua University, Beijing 100084, China
School of Environment and Energy, South China University of Technology, Guangzhou 510000, China
School of New Energy, Nanjing University of Science and Technology, Jiangyin 214443, China
School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China
State Key Laboratory of Power System, Department of Electrical Engineering, Tsinghua University, Beijing 100084, China
School of Materials Science and Engineering, Beihang University, Beijing 100191, China
School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
Key Laboratory of Semiconductor Materials Science, Beijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
Show Author Information

Graphical Abstract

Perovskite films with gradient bandgap were made by using a facile solution interdiffusion method. Self-powered multiband photodetectors and spectrometers were fabricated by using the bandgap-graded perovskite films.

Abstract

Bandgap-graded materials present varying spectral responses at different positions, making them possible to be used as an alternative to photoactive materials array in multi-spectral responsive devices, thus miniaturizing the apparatus. However, the preparation of bandgap-graded materials usually requires complicated deposition process. Here we report a facile low-temperature solution process to make films with lateral bandgap gradients, which form spontaneously via self-spreading and interdiffusion of solutions. We show lead halide perovskite films with MAPbCl3-MAPbBr3 and MAPbBr3-MAPbI3 gradients, which exhibit light absorption onsets ranging from 410 to 781 nm. The bandgap-graded films were used to make self-powered multiband photodetectors, which show different spectral responses at different positions without applying bias voltage. Furthermore, self-powered spectrometers were made by using the multiband photodetectors.

Electronic Supplementary Material

Download File(s)
12274_2023_5714_MOESM1_ESM.pdf (2.3 MB)

References

[1]

Fang, Y. J.; Dong, Q. F.; Shao, Y. C.; Yuan, Y. B.; Huang, J. S. Highly narrowband perovskite single-crystal photodetectors enabled by surface-charge recombination. Nat. Photonics 2015, 9, 679–686.

[2]

Lin, Q. Q.; Armin, A.; Burn, P. L.; Meredith, P. Filterless narrowband visible photodetectors. Nat. Photonics 2015, 9, 687–694.

[3]

Xu, X. B.; Dong, Y. H.; Zhang, Y. Z.; Han, Z. Y.; Liu, J. X.; Yu, D. J.; Wei, Y.; Zou, Y. S.; Huang, B.; Chen, J. et al. High-definition colorful perovskite narrowband photodetector array enabled by laser-direct-writing. Nano Res. 2022, 15, 5476–5482.

[4]

Xie, B. M.; Xie, R. H.; Zhang, K.; Yin, Q. W.; Hu, Z. C.; Yu, G.; Huang, F.; Cao, Y. Self-filtering narrowband high performance organic photodetectors enabled by manipulating localized Frenkel exciton dissociation. Nat. Commun. 2020, 11, 2871.

[5]

Li, K. H.; Lu, Y.; Yang, X. K.; Fu, L. C.; He, J. G.; Lin, X. T.; Zheng, J. J.; Lu, S. C.; Chen, C.; Tang, J. Filter-free self-power CdSe/Sb2(S1−x, Sex)3 nearinfrared narrowband detection and imaging. InfoMat 2021, 3, 1145–1153.

[6]

Bao, J.; Bawendi, M. G. A colloidal quantum dot spectrometer. Nature 2015, 523, 67–70.

[7]

Yuan, S. F.; Naveh, D.; Watanabe, K.; Taniguchi, T.; Xia, F. N. A wavelength-scale black phosphorus spectrometer. Nat. Photonics 2021, 15, 601–607.

[8]

Zhu, X. X.; Bian, L. H.; Fu, H.; Wang, L. X.; Zou, B. S.; Dai, Q. H.; Zhang, J.; Zhong, H. Z. Broadband perovskite quantum dot spectrometer beyond human visual resolution. Light Sci. Appl. 2020, 9, 73.

[9]

Sobhani, A.; Knight, M. W.; Wang, Y. M.; Zheng, B.; King, N. S.; Brown, L. V.; Fang, Z. Y.; Nordlander, P.; Halas, N. J. Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device. Nat. Commun. 2013, 4, 1643.

[10]

Xue, J.; Zhu, Z. F.; Xu, X. B.; Gu, Y.; Wang, S. L.; Xu, L. M.; Zou, Y. S.; Song, J. Z.; Zeng, H. B.; Chen, Q. Narrowband perovskite photodetector-based image array for potential application in artificial vision. Nano Lett. 2018, 18, 7628–7634.

[11]

Wang, J.; Xiao, S.; Qian, W.; Zhang, K.; Yu, J.; Xu, X. W.; Wang, G. P.; Zheng, S. Z.; Yang, S. H. Self-driven perovskite narrowband photodetectors with tunable spectral responses. Adv. Mater. 2021, 33, 2005557.

[12]

Yang, Z. Y.; Albrow-Owen, T.; Cai, W. W.; Hasan, T. Miniaturization of optical spectrometers. Science 2021, 371, eabe0722.

[13]

Hagen, N. A.; Kudenov, M. W. Review of snapshot spectral imaging technologies. Opt. Eng. 2013, 52, 090901.

[14]

Ning, C. Z.; Dou, L. T.; Yang, P. D. Bandgap engineering in semiconductor alloy nanomaterials with widely tunable compositions. Nat. Rev. Mater. 2017, 2, 17070.

[15]

Xu, H.; Zhu, J. T.; Zou, G. F.; Liu, W.; Li, X.; Li, C. H.; Ryu, G. H.; Xu, W. S.; Han, X. Y.; Guo, Z. X. et al. Spatially bandgap-graded MoS2(1−x)Se2x homojunctions for self-powered visible-near-infrared phototransistors. Nano-Micro Lett. 2020, 12, 26.

[16]

Huang, L.; Gao, Q. G.; Sun, L. D.; Dong, H.; Shi, S.; Cai, T.; Liao, Q.; Yan, C. H. Composition-graded cesium lead halide perovskite nanowires with tunable dual-color lasing performance. Adv. Mater. 2018, 30, 1800596.

[17]

Lei, Y. S.; Chen, Y. M.; Zhang, R. Q.; Li, Y. H.; Yan, Q. Z.; Lee, S.; Yu, Y. G.; Tsai, H.; Choi, W.; Wang, K. P. et al. A fabrication process for flexible single-crystal perovskite devices. Nature 2020, 583, 790–795.

[18]

Gu, F. X.; Yang, Z. Y.; Yu, H. K.; Xu, J. Y.; Wang, P.; Tong, L. M.; Pan, A. L. Spatial bandgap engineering along single alloy nanowires. J. Am. Chem. Soc. 2011, 133, 2037–2039.

[19]

Zhuang, X. J.; Ning, C. Z.; Pan, A. L. Composition and bandgap-graded semiconductor alloy nanowires. Adv. Mater. 2012, 24, 13–33.

[20]

Yang, Z. Y.; Albrow-Owen, T.; Cui, H. X.; Alexander-Webber, J.; Gu, F. X.; Wang, X. M.; Wu, T. C.; Zhuge, M. H.; Williams, C.; Wang, P. et al. Single-nanowire spectrometers. Science 2019, 365, 1017–1020.

[21]

Dunlap-Shohl, W. A.; Zhou, Y. Y.; Padture, N. P.; Mitzi, D. B. Synthetic approaches for halide perovskite thin films. Chem. Rev. 2019, 119, 3193–3295.

[22]

Jiang, Q.; Zhao, Y.; Zhang, X. W.; Yang, X. L.; Chen, Y.; Chu, Z. M.; Ye, Q. F.; Li, X. X.; Yin, Z. G.; You, J. B. Surface passivation of perovskite film for efficient solar cells. Nat. Photonics 2019, 13, 460–466.

[23]

Bian, H.; Bai, D. L.; Jin, Z. W.; Wang, K.; Liang, L.; Wang, H. R.; Zhang, J. R.; Wang, Q.; Liu, S. Z. Graded bandgap CsPbI2+xBr1−x perovskite solar cells with a stabilized efficiency of 14.4%. Joule 2018, 2, 1500–1510.

[24]

Zuo, C. T.; Scully, A. D.; Vak, D.; Tan, W. L.; Jiao, X. C.; McNeill, C. R.; Angmo, D.; Ding, L. M.; Gao, M. Self-assembled 2D perovskite layers for efficient printable solar cells. Adv. Energy Mater. 2019, 9, 1803258.

[25]

Zuo, C. T.; Ding, L. M. Drop-casting to make efficient perovskite solar cells under high humidity. Angew. Chem., Int. Ed. 2021, 60, 11242–11246.

[26]

Liu, L.; Zuo, C. T.; Ding, L. M. Self-spreading produces highly efficient perovskite solar cells. Nano Energy 2021, 90, 106509.

[27]

Xiao, H. R.; Zuo, C. T.; Zhang, L. X.; Zhang, W. H.; Hao, F.; Yi, C. Y.; Liu, F. Y.; Jin, H. L.; Ding, L. M. Efficient inorganic perovskite solar cells made by drop-coating in ambient air. Nano Energy 2023, 106, 108061.

[28]

Liu, L.; Xiao, H. R.; Jin, K.; Xiao, Z.; Du, X. Y.; Yan, K. Y.; Hao, F.; Bao, Q. Y.; Yi, C. Y.; Liu, F. Y. et al. 4-Terminal inorganic perovskite/organic tandem solar cells offer 22% efficiency. Nano-Micro Lett. 2023, 5, 23.

[29]

Zuo, C. T.; Scully, A. D.; Gao, M. Drop-casting method to screen ruddlesden-popper perovskite formulations for use in solar cells. ACS Appl. Mater. Interfaces 2021, 13, 56217–56225.

[30]

Zhang, L. X.; Zuo, C. T.; Ding, L. M. Efficient MAPbI3 solar cells made via drop-coating at room temperature. J. Semicond. 2021, 42, 072201.

[31]

Liu, D. Y.; Yang, C. C.; Lunt, R. R. Halide perovskites for selective ultraviolet-harvesting transparent photovoltaics. Joule 2018, 2, 1827–1837.

[32]

Noh, J. H.; Im, S. H.; Heo, J. H.; Mandal, T. N.; Seok, S. I. Chemical management for colorful, efficient, and stable inorganic–organic hybrid nanostructured solar cells. Nano Lett. 2013, 13, 1764–1769.

[33]

Liu, T. H.; Chen, K.; Hu, Q.; Zhu, R.; Gong, Q. H. Inverted perovskite solar cells: Progresses and perspectives. Adv. Energy Mater. 2016, 6, 1600457.

[34]

Wang, S. R.; Guo, H. X.; Wu, Y. Z. Advantages and challenges of self-assembled monolayer as a hole-selective contact for perovskite solar cells. Mater. Futures 2023, 2, 012105.

[35]

Mahajan, P.; Padha, B.; Verma, S.; Gupta, V.; Datt, R.; Tsoi, W. C.; Satapathi, S.; Arya, S. Review of current progress in hole-transporting materials for perovskite solar cells. J. Energy Chem. 2022, 68, 330–386.

Nano Research
Pages 10256-10262
Cite this article:
Zuo C, Zhang L, Pan X, et al. Perovskite films with gradient bandgap for self-powered multiband photodetectors and spectrometers. Nano Research, 2023, 16(7): 10256-10262. https://doi.org/10.1007/s12274-023-5714-y
Topics:

1099

Views

12

Crossref

11

Web of Science

11

Scopus

1

CSCD

Altmetrics

Received: 06 February 2023
Revised: 28 March 2023
Accepted: 05 April 2023
Published: 29 April 2023
© Tsinghua University Press 2023
Return