AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Enhanced performance of triboelectric mechanical motion sensor via continuous charge supplement and adaptive signal processing

Zitang Yuan1,§Xiaosong Zhang1,§Hengyu Li1,§Ping Shen3Jianming Wen2( )Zhong Lin Wang1,4( )Tinghai Cheng1( )
Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
The Institute of Precision Machinery and Smart Structure, Zhejiang Normal University, Jinhua 321004, China
State Key Laboratory of Internet of Things for Smart City and Department of Civil and Environmental Engineering, University of Macau, Macao 999078, China
Georgia Institute of Technology, Atlanta, GA 30332-0245, USA

§ Zitang Yuan, Xiaosong Zhang, and Hengyu Li contributed equally to this work.

Show Author Information

Graphical Abstract

In this work, a continuous charge supplement (CCS) strategy and an adaptive signal processing (ASP) method are proposed to improve the lifetime and robustness of triboelectric sensor. A signal conditioning circuit for impedance matching and analog-to-digital conversion is designed to realize real-time monitoring of multiple motion parameters. It has potential application prospects in automation industries such as smart factories and unmanned warehousing.

Abstract

The development of automation industry is inseparable from the progress of sensing technology. As a promising self-powered sensing technology, the durability and stability of triboelectric sensor (TES) have always been inevitable challenges. Herein, a continuous charge supplement (CCS) strategy and an adaptive signal processing (ASP) method are proposed to improve the lifetime and robustness of TES. The CCS uses low friction brushes to increase the surface charge density of the dielectric, ensuring the reliability of sensing. A triboelectric mechanical motion sensor (TMMS) with CCS is designed, and its electrical signal is hardly attenuated after 1.5 million cycles after reasonable parameter optimization, which is unprecedented in linear TESs. After that, the dynamic characteristics of the CCS-TMMS are analyzed with error rates of less than 1% and 2% for displacement and velocity, respectively, and a signal-to-noise ratio of more than 35 dB. Also, the ASP used a signal conditioning circuit for impedance matching and analog-to-digital conversion to achieve a stable output of digital signals, while the integrated design and manufacture of each hardware module is achieved. Finally, an intelligent logistics transmission system (ILTS) capable of wirelessly monitoring multiple motion parameters is developed. This work is expected to contribute to automation industries such as smart factories and unmanned warehousing.

Electronic Supplementary Material

Video
12274_2023_5715_MOESM5_ESM.mp4
12274_2023_5715_MOESM2_ESM.mp4
12274_2023_5715_MOESM3_ESM.mp4
12274_2023_5715_MOESM4_ESM.mp4
Download File(s)
12274_2023_5715_MOESM1_ESM.pdf (2.7 MB)

References

[1]

Miao, Y. M.; Wu, G. X.; Liu, C.; Hossain, M. S.; Muhammad, G. Green cognitive body sensor network: Architecture, energy harvesting, and smart clothing-based applications. IEEE Sens. J. 2019, 19, 8371–8378.

[2]

Reininger, T.; Welker, F.; Von Zeppelin, M. Sensors in position control applications for industrial automation. Sens. Actuators A Phys. 2006, 129, 270–274.

[3]

Wang, X.; Liang, Q. L. Efficient sensor selection schemes for wireless sensor networks in microgrid. IEEE Syst. J. 2018, 12, 539–547.

[4]

Ripka, P.; Mirzaei, M.; Blažek, J. Magnetic position sensors. Meas. Sci. Technol 2022, 33, 022002.

[5]

Pu, H. J.; Liu, H. Z.; Liu, X. K.; Peng, K.; Yu, Z. C. A novel capacitive absolute positioning sensor based on time grating with nanometer resolution. Mech. Syst. Signal Proc. 2018, 104, 705–715.

[6]

Ma, R. D.; Tian, J. X.; Xia, Y. J.; Cao, D. G.; Zhao, H. Y. Photoelectric hybrid current sensor combination of LPCT and FFI. IEEE Photon. Technol. Lett. 2014, 26, 2476–2479.

[7]

Chen, D. X.; Li, Y. T.; Pan, M. C.; Tian, W. G. Flexible planar electromagnetic sensor array fabricated with printing electronic technology. Measurement 2018, 129, 499–503.

[8]

Nguyen, T.; Dinh, T.; Foisal, A. R. M.; Phan, H. P.; Nguyen, T. K.; Nguyen, N. T.; Dao, D. V. Giant piezoresistive effect by optoelectronic coupling in a heterojunction. Nat. Commun. 2019, 10, 4139.

[9]

Li, H.; Zhang, X. F.; Tzou, H. Diagonal piezoelectric sensors on cylindrical shells. J. Sound Vib. 2017, 400, 201–212.

[10]

Pei, H. F.; Zhang, F.; Zhang, S. Q. Development of a novel hall element inclinometer for slope displacement monitoring. Measurement 2021, 181, 109636.

[11]

Zhao, Y.; Shen, J. C.; Liu, Q.; Zhu, C. L. Optical fiber sensor based on helical fibers: A review. Measurement 2022, 188, 110400.

[12]

Fan, F. R.; Tian, Z. Q.; Wang, Z. L. Flexible triboelectric generator. Nano Energy 2012, 1, 328–334.

[13]

Niu, S. M.; Wang, Z. L. Theoretical systems of triboelectric nanogenerators. Nano Energy 2015, 14, 161–192.

[14]

Wang, Z. L. On Maxwell’s displacement current for energy and sensors: The origin of nanogenerators. Mater. Today 2017, 20, 74–82.

[15]

Wang, Z. L. Catch wave power in floating nets. Nature 2017, 542, 159–160.

[16]

Wang, H. Y.; Wang, J. Q.; Yao, K. M.; Fu, J. J.; Xia, X.; Zhang, R. R.; Li, J. Y.; Xu, G. Q.; Wang, L. Y.; Yang, J. C. et al. A paradigm shift fully self-powered long-distance wireless sensing solution enabled by discharge-induced displacement current. Sci. Adv. 2021, 7, eabi6751.

[17]

Zhao, X.; Askari, H.; Chen, J. Nanogenerators for smart cities in the era of 5G and Internet of Things. Joule 2021, 5, 1391–1431.

[18]

Wu, Z. Y.; Cheng, T. H.; Wang, Z. L. Self-powered sensors and systems based on nanogenerators. Sensors 2020, 20, 2925.

[19]

Jin, T.; Sun, Z. D.; Li, L.; Zhang, Q.; Zhu, M. L.; Zhang, Z. X.; Yuan, G. J.; Chen, T.; Tian, Y. Z.; Hou, X. Y. et al. Triboelectric nanogenerator sensors for soft robotics aiming at digital twin applications. Nat. Commun. 2020, 11, 5381.

[20]

Yin, X.; Liu, D.; Zhou, L. L.; Li, X. Y.; Xu, G. Q.; Liu, L.; Li, S. X.; Zhang, C. G.; Wang, J.; Wang, Z. L. A motion vector sensor via direct-current triboelectric nanogenerator. Adv. Funct. Mater. 2020, 30, 2002547.

[21]

Wang, Z. M.; An, J.; Nie, J. H.; Luo, J. J.; Shao, J. J.; Jiang, T.; Chen, B. D.; Tang, W.; Wang, Z. L. A self-powered angle sensor at nanoradian-resolution for robotic arms and personalized medicare. Adv. Mater. 2020, 32, 2001466.

[22]

Zhang, X. S.; Gao, Q.; Gao, Q.; Yu, X.; Cheng, T. H.; Wang, Z. L. Triboelectric rotary motion sensor for industrial-grade speed and angle monitoring. Sensors 2021, 21, 1713.

[23]

Lu, X. H.; Li, H. C.; Zhang, X. S.; Gao, B. Z.; Cheng, T. H. Magnetic-assisted self-powered acceleration sensor for real-time monitoring vehicle operation and collision based on triboelectric nanogenerator. Nano Energy 2022, 96, 107094.

[24]

Wang, C.; Zhang, X. S.; Wu, J.; Yu, X.; Cheng, T. H.; Ma, H. W.; Wang, Z. L. Double-spring-piece structured triboelectric sensor for broadband vibration monitoring and warning. Mech. Syst. Signal Proc. 2022, 166, 108429.

[25]

Han, Q. K.; Jiang, Z. Y.; Xu, X. P.; Ding, Z.; Chu, F. L. Self-powered fault diagnosis of rolling bearings based on triboelectric effect. Mech. Syst. Signal Proc. 2022, 166, 108382.

[26]

Zhong, Y. M.; Guo, Y. C.; Wei, X. X.; Rui, P. S.; Du, H. J.; Wang, P. H. Multi-cylinder-based hybridized electromagnetic-triboelectric nanogenerator harvesting multiple fluid energy for self-powered pipeline leakage monitoring and anticorrosion protection. Nano Energy 2021, 89, 106467.

[27]

Han, Q. K.; Ding, Z.; Qin, Z. Y.; Wang, T. Y.; Xu, X. P.; Chu, F. L. A triboelectric rolling ball bearing with self-powering and self-sensing capabilities. Nano Energy 2020, 67, 104277.

[28]

Zhang, B. B.; Wu, Z. Y.; Lin, Z. M.; Guo, H. Y.; Chun, F. J.; Yang, W. Q.; Wang, Z. L. All-in-one 3D acceleration sensor based on coded liquid-metal triboelectric nanogenerator for vehicle restraint system. Mater. Today 2021, 43, 37–44.

[29]

Luo, J. Z.; Li, Y. S.; He, M.; Wang, Z. M.; Li, C. Y.; Liu, D.; An, J.; Xie, W. Q.; He, Y. Q.; Xiao, W. F. et al. Rehabilitation of total knee arthroplasty by integrating conjoint isometric myodynamia and real-time rotation sensing system. Adv. Sci. 2022, 9, 2105219.

[30]

Xie, Z. J.; Zeng, Z. H.; Yang, F.; Lv, J. L.; Wang, Y.; Wu, R. S.; Liu, J. X.; Wang, Z. L.; Cheng, T. H. Sliding triboelectric circular motion sensor with real-time hardware processing. Adv. Mater. Technol. 2021, 6, 2100655.

[31]

Fu, X. P.; Xu, S. H.; Gao, Y. Y.; Zhang, X. H.; Liu, G. X.; Zhou, H.; Lv, Y.; Zhang, C.; Wang, Z. L. Breeze-wind-energy-powered autonomous wireless anemometer based on rolling contact-electrification. ACS Energy Lett. 2021, 6, 2343–2350.

[32]

Niu, S. M.; Liu, Y.; Chen, X. Y.; Wang, S. H.; Zhou, Y. S.; Lin, L.; Xie, Y. N.; Wang, Z. L. Theory of freestanding triboelectric-layer-based nanogenerators. Nano Energy 2015, 12, 760–774.

[33]

Jing, Q. S.; Xie, Y. N.; Zhu, G.; Han, R. P. S.; Wang, Z. L. Self-powered thin-film motion vector sensor. Nat. Commun. 2015, 6, 8031.

[34]

Xie, Z. J.; Dong, J. W.; Yang, F.; Xu, R. H.; Gao, Q.; Cheng, T. H.; Wang, Z. L. Sweep-type triboelectric linear motion sensor with staggered electrode. Extreme Mech. Lett. 2020, 37, 100713.

[35]

Li, W. J.; Liu, G. X.; Jiang, D. D.; Wang, C.; Li, W.; Guo, T.; Zhao, J. Q.; Xi, F. B.; Liu, W. B.; Zhang, C. Interdigitated electrode-based triboelectric sliding sensor for security monitoring. Adv. Mater. Technol. 2018, 3, 1800189.

[36]

Yuan, Z. T.; Zhang, X. S.; Gao, Q.; Wang, Z.; Cheng, T. H.; Wang, Z. L. Integrated real-time pneumatic monitoring system with triboelectric linear displacement sensor. IEEE Trans. Ind. Electron. 2023, 70, 6435–6441.

[37]

Zhou, Y. S.; Zhu, G.; Niu, S. M.; Liu, Y.; Bai, P.; Jing, Q. S.; Wang, Z. L. Nanometer resolution self-powered static and dynamic motion sensor based on micro-grated triboelectrification. Adv. Mater. 2014, 26, 1719–1724.

Nano Research
Pages 10263-10271
Cite this article:
Yuan Z, Zhang X, Li H, et al. Enhanced performance of triboelectric mechanical motion sensor via continuous charge supplement and adaptive signal processing. Nano Research, 2023, 16(7): 10263-10271. https://doi.org/10.1007/s12274-023-5715-x
Topics:

916

Views

3

Crossref

3

Web of Science

3

Scopus

0

CSCD

Altmetrics

Received: 16 February 2023
Revised: 17 March 2023
Accepted: 05 April 2023
Published: 03 June 2023
© Tsinghua University Press 2023
Return