AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Dual cation doping enabling simultaneously boosted capacity and rate capability of MnO2 cathodes for Zn//MnO2 batteries

Chongze WangHao YangBin WangPeibin DingYi WanWenjing BaoYanan LiSuyan MaYang LiuYukun Lu( )Han Hu ( )
State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
Show Author Information

Graphical Abstract

The Ti and Ni dual-doped MnO2 has been facilely prepared, where Ti could induce a partial multivalent variation for a higher capacity and the doped Ni facilitates the proton transfer in the MnO2 matrix for a high rate performance.

Abstract

Aqueous rechargeable Zn//MnO2 batteries show promising prospects for grid-scale energy storage due to their intrinsic safety, abundant resource, and potential high performance. Unfortunately, the real capability of these devices is far from satisfactory thanks to the low capacity and sluggish kinetics of the MnO2 cathode. Herein, we report a dual cation doping strategy by synthesis of MnO2 in the presence of Ti3C2X MXenes and Ni2+ ions to essentially address these drawbacks. Such a process contributes to a Ti,Ni co-doped α-MnO2 anchored on MXenes. The Ti3+ ions incorporated in the framework allow a partial multivalent variation for a large capacity while the Ni2+ ions promote the H+ transfer within the MnO2 matrix via the Grotthuss proton transport manner. As a result, the optimal dual cation doped MnO2 exhibits a large reversible capacity of 378 mAh·g−1 at 0.1 C and a high rate capability. Moreover, capacity retention as high as 92% is observed after cycling at 4 C for 1000 times, far superior to many of the previously reported results. This facile strategy demonstrated here may shed new insight into the rational design of electrodes based on high-performance Zn//MnO2 batteries.

Electronic Supplementary Material

Download File(s)
12274_2023_5717_MOESM1_ESM.pdf (2.5 MB)
12274_2023_5717_MOESM2_ESM.pdf (432.4 KB)

References

[1]

Yang, L. Y.; Yang, K.; Zheng, J. X.; Xu, K.; Amine, K.; Pan, F. Harnessing the surface structure to enable high-performance cathode materials for lithium-ion batteries. Chem. Soc. Rev. 2020, 49, 4667–4680.

[2]

Goodenough, J. B.; Park, K. S. The Li-ion rechargeable battery: A perspective. J. Am. Chem. Soc. 2013, 135, 1167–1176.

[3]

Lu, Y. H.; Goodenough, J. B.; Kim, Y. Aqueous cathode for next-generation alkali-ion batteries. J. Am. Chem. Soc. 2011, 133, 5756–5759.

[4]

Suo, L. M.; Borodin, O.; Sun, W.; Fan, X. L.; Yang, C. Y.; Wang, F.; Gao, T.; Ma, Z. H.; Schroeder, M.; Von Cresce, A. et al. Advanced high-voltage aqueous lithium-ion battery enabled by “water-in-bisalt” electrolyte. Angew. Chem., Int. Ed. 2016, 128, 7252–7257.

[5]

Suo, L. M.; Borodin, O.; Gao, T.; Olguin, M.; Ho, J.; Fan, X. L.; Luo, C.; Wang, C. S.; Xu, K. “Water-in-salt” electrolyte enables high-voltage aqueous lithium-ion chemistries. Science 2015, 350, 938–943.

[6]

Li, Q.; Chen, A.; Wang, D. H.; Zhao, Y. W.; Wang, X. Q.; Jin, X.; Xiong, B.; Zhi, C. Y. Tailoring the metal electrode morphology via electrochemical protocol optimization for long-lasting aqueous zinc batteries. Nat. Commun. 2022, 13, 3699.

[7]

Zhang, Z. D.; Zhu, J. X.; Chen, S. H.; Sun, W. M.; Wang, D. S. Liquid fluxional Ga single atom catalysts for efficient electrochemical CO2 reduction. Angew. Chem., Int. Ed. 2023, 135, e202215136.

[8]

Zhu, J. X.; Li, S. K.; Zhuang, Z. C.; Gao, S.; Hong, X. F.; Pan, X. L.; Yu, R. H.; Zhou, L.; Moskaleva, L. V.; Mai, L. Ultrathin metal silicate hydroxide nanosheets with moderate metal-oxygen covalency enables efficient oxygen evolution. Energy Environ. Mater. 2022, 5, 231–237.

[9]

Chen, S. H.; Zhang, Z. D.; Jiang, W. J.; Zhang, S. S.; Zhu, J. X.; Wang, L. Q.; Ou, H. H.; Zaman, S.; Tan, L.; Zhu, P. et al. Engineering water molecules activation center on multisite electrocatalysts for enhanced CO2 methanation. J. Am. Chem. Soc. 2022, 144, 12807–12815.

[10]

Liu, Y. F.; Liu, S. D.; Xie, X. S.; Li, Z. C.; Wang, P. J.; Lu, B. G.; Liang, S. Q.; Tang, Y.; Zhou, J. A functionalized separator enables dendrite-free Zn anode via metal-polydopamine coordination chemistry. InfoMat 2023, 5, e12374.

[11]

Liu, J. H.; Zhou, W. H.; Zhao, R. Z.; Yang, Z. D.; Li, W.; Chao, D. L.; Qiao, S. Z.; Zhao, D. Y. Sulfur-based aqueous batteries: Electrochemistry and strategies. J. Am. Chem. Soc. 2021, 143, 15475–15489.

[12]

Yang, Z. D.; Wang, B. Y.; Chen, Y. J.; Zhou, W. H.; Li, H. P.; Zhao, R. Z.; Li, X. R.; Zhang, T. S.; Bu, F. X.; Zhao, Z. W. et al. Activating sulfur oxidation reaction via six-electron redox mesocrystal NiS2 for sulfur-based aqueous batteries. Natl. Sci. Rev. 2022, 0, nwac268.

[13]

Xie, X. S.; Li, J. J.; Xing, Z. Y.; Lu, B. G.; Liang, S. Q.; Zhou, J. Biocompatible zinc battery with programmable electro-cross-linked electrolyte. Natl. Sci. Rev. 2023, 10, nwac281.

[14]

Hou, Z. G.; Zhang, T. S.; Liu, X.; Xu, Z. B.; Liu, J. H.; Zhou, W. H.; Qian, Y. T.; Fan, H. J.; Chao, D. L.; Zhao, D. Y. A solid-to-solid metallic conversion electrochemistry toward 91% zinc utilization for sustainable aqueous batteries. Sci. Adv. 2022, 8, eabp8960.

[15]

Kundu, D.; Adams, B. D.; Duffort, V.; Vajargah, S. H.; Nazar, L. F. A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode. Nat. Energy 2016, 1, 16119.

[16]
Zhao, R. Z.; Dong, X. S.; Liang, P.; Li, H. P.; Zhang, T. S.; Zhou, W. H.; Wang, B. Y.; Yang, Z. D.; Wang, X.; Wang, L. P. et al. Prioritizing hetero-metallic interfaces via thermodynamics inertia and kinetics zincophilia metrics for tough Zn-based aqueous batteries. Adv. Mater., in press, https://doi.org/10.1002/adma.202209288.
[17]

Yang, H.; Feng, Z. X.; Teng, X. L.; Guan, L.; Hu, H.; Wu, M. B. Three-dimensional printing of high-mass loading electrodes for energy storage applications. InfoMat 2021, 3, 631–647.

[18]
Yang, H.; Wan, Y.; Sun, K.; Zhang, M. D.; Wang, C. Z.; He, Z. Q.; Li, Q.; Wang, N.; Zhang, Y. L.; Hu, H. et al. Reconciling mass loading and gravimetric performance of MnO2 cathodes by 3D-printed carbon structures for zinc-ion batteries. Adv. Funct. Mater., in press, https://doi.org/10.1002/adfm.202215076.
[19]

Pan, H. L.; Shao, Y. Y.; Yan, P. F.; Cheng, Y. W.; Han, K. S.; Nie, Z. M.; Wang, C. M.; Yang, J. H.; Li, X. L.; Bhattacharya, P. et al. Reversible aqueous zinc/manganese oxide energy storage from conversion reactions. Nat. Energy 2016, 1, 16039.

[20]

Xu, C. J.; Li, B. H.; Du, H. D.; Kang, F. Y. Energetic zinc ion chemistry: The rechargeable zinc ion battery. Angew. Chem., Int. Ed. 2012, 124, 957–959.

[21]

Fu, Y. Q.; Wei, Q. L.; Zhang, G. X.; Wang, X. M.; Zhang, J. H.; Hu, Y. F.; Wang, D. N.; Zuin, L.; Zhou, T.; Wu, Y. C. et al. High-performance reversible aqueous Zn-ion battery based on porous MnOx nanorods coated by MOF-derived N-doped carbon. Adv. Energy Mater. 2018, 8, 1801445.

[22]
Gou, L.; Li, J. R.; Liang, K.; Zhao, S. P.; Li, D. L.; Fan, X. Y. Bi-MOF modulating MnO2 deposition enables ultra-stable cathode-free aqueous zinc-ion batteries. Small, in press, https://doi.org/10.1002/smll.202208233.
[23]

Ding, Y. X.; Zhang, S. W.; Li, J. Z.; Sun, Y.; Yin, B. S.; Li, H.; Ma, Y.; Wang, Z. Q.; Ge, H.; Su, D. W. et al. Enhanced elastic migration of magnesium cations in alpha-manganese dioxide tunnels locally tuned by aluminium substitution. Adv. Funct. Mater. 2023, 33, 2210519.

[24]

Guo, Y.; Li, L.; Song, L.; Wu, M. Z.; Gao, Y. H.; Chen, J. S.; Mao, C. J.; Song, J. M.; Niu, H. L. Co2+ induced phase transformation from δ- to α-MnO2 and their hierarchical α-MnO2@δ-MnO2 nanostructures for efficient asymmetric supercapacitors. J. Mater. Chem. A 2019, 7, 12661–12668.

[25]

Lian, S. T.; Sun, C. L.; Xu, W. N.; Huo, W. C.; Luo, Y. Z.; Zhao, K. N.; Yao, G.; Xu, W. W.; Zhang, Y. X.; Li, Z. et al. Built-in oriented electric field facilitating durable Zn-MnO2 battery. Nano Energy 2019, 62, 79–84.

[26]

Chen, X. J.; Li, W.; Xu, Y. B.; Zeng, Z. P.; Tian, H. C.; Velayutham, M.; Shi, W. Y.; Li, W. Y.; Wang, C. M.; Reed, D. et al. Charging activation and desulfurization of MnS unlock the active sites and electrochemical reactivity for Zn-ion batteries. Nano Energy 2020, 75, 104869.

[27]

Huang, J. D.; Zeng, J.; Zhu, K. J.; Zhang, R. Z.; Liu, J. High-performance aqueous zinc-manganese battery with reversible Mn2+/Mn4+ double redox achieved by carbon coated MnOx nanoparticles. Nano-Micro Lett. 2020, 12, 110.

[28]

Zhao, Y. J.; Zhang, P. J.; Liang, J. R.; Xia, X. Y.; Ren, L. T.; Song, L.; Liu, W.; Sun, X. M. Uncovering sulfur doping effect in MnO2 nanosheets as an efficient cathode for aqueous zinc ion battery. Energy Storage Mater. 2022, 47, 424–433.

[29]

Zhu, J. X.; Xia, L. X.; Yang, W. X.; Yu, R. H.; Zhang, W.; Luo, W.; Dai, Y. H.; Wei, W.; Zhou, L.; Zhao, Y. et al. Activating inert sites in cobalt silicate hydroxides for oxygen evolution through atomically doping. Energy Environ. Mater. 2022, 5, 655–661.

[30]

Jin, C. Y.; Fan, S. J.; Zhuang, Z. C.; Zhou, Y. S. Single-atom nanozymes: From bench to bedside. Nano Res. 2023, 16, 1992–2002.

[31]

Zhao, Q. H.; Song, A. Y.; Zhao, W. G.; Qin, R. Z.; Ding, S. X.; Chen, X.; Song, Y. L.; Yang, L. Y.; Lin, H.; Li, S. N. et al. Boosting the energy density of aqueous batteries via facile grotthuss proton transport. Angew. Chem., Int. Ed. 2021, 60, 4169–4174.

[32]

Liu, Z. H.; Du, Y.; Yu, R. H.; Zheng, M. B.; Hu, R.; Wu, J. S.; Xia, Y. Y.; Zhuang, Z. C.; Wang, D. S. Tuning mass transport in electrocatalysis down to sub-5 nm through nanoscale grade separation. Angew. Chem., Int. Ed. 2023, 62, e202212653.

[33]

Zhu, H.; Sun, S. H.; Hao, J. C.; Zhuang, Z. C.; Zhang, S. G.; Wang, T. D.; Kang, Q.; Lu, S. L.; Wang, X. F.; Lai, F. L. et al. A high-entropy atomic environment converts inactive to active sites for electrocatalysis. Energy Environ. Sci. 2023, 16, 619–628.

[34]

Zhuang, Z. C.; Li, Y. H.; Yu, R. H.; Xia, L. X.; Yang, J. R.; Lang, Z. Q.; Zhu, J. X.; Huang, J. Z.; Wang, Y. O.; Wang, Y. et al. Reversely trapping atoms from a perovskite surface for high-performance and durable fuel cell cathodes. Nat. Catal. 2022, 5, 300–310.

[35]

Zhuang, Z. C.; Xia, L. X.; Huang, J. Z.; Zhu, P.; Li, Y.; Ye, C. L.; Xia, M. G.; Yu, R. H.; Lang, Z. Q.; Zhu, J. X. et al. Continuous modulation of electrocatalytic oxygen reduction activities of single-atom catalysts through p-n junction rectification. Angew. Chem., Int. Ed. 2023, 62, e202212335.

[36]

Persson, I.; Halim, J.; Hansen, T. W.; Wagner, J. B.; Darakchieva, V.; Palisaitis, J.; Rosen, J.; Persson, P. O. Å. How much oxygen can a MXene surface take before it breaks? Adv. Funct. Mater. 2020, 30, 1909005.

[37]

Liu, N.; Li, Q. Q.; Wan, H. J.; Chang, L. B.; Wang, H.; Fang, J. H.; Ding, T. P.; Wen, Q. Y.; Zhou, L. J.; Xiao, X. High-temperature stability in air of Ti3C2Tx MXene-based composite with extracted bentonite. Nat. Commun. 2022, 13, 5551.

[38]

Zhu, J. X.; Xia, L. X.; Yu, R. H.; Lu, R. H.; Li, J. T.; He, R. H.; Wu, Y. C.; Zhang, W.; Hong, X. F.; Chen, W. et al. Ultrahigh stable methanol oxidation enabled by a high hydroxyl concentration on Pt clusters/MXene interfaces. J. Am. Chem. Soc. 2022, 144, 15529–15538.

[39]

Naguib, M.; Kurtoglu, M.; Presser, V.; Lu, J.; Niu, J. J.; Heon, M.; Hultman, L.; Gogotsi, Y.; Barsoum, M. W. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 2011, 23, 4248–4253.

[40]

Zhang, S. L.; Ying, H. J.; Huang, P. F.; Yang, T. T.; Han, W. Q. Hierarchical utilization of raw Ti3C2Tx MXene for fast preparation of various Ti3C2Tx MXene derivatives. Nano Res. 2022, 15, 2746–2755.

[41]

Zhang, Y.; Kang, C.; Zhao, W.; Sun, B. Y.; Xiao, X. J.; Huo, H.; Ma, Y. L.; Zuo, P. J.; Lou, S. F.; Yin, G. P. Crystallographic engineering to reduce diffusion barrier for enhanced intercalation pseudocapacitance of TiNb2O7 in fast-charging batteries. Energy Storage Mater. 2022, 47, 178–186.

[42]

Tian, Y. Y.; Tian, Y.; Huang, P.; Wang, L.; Shi, Q. F.; Cui, C. Effect of Yb3+ concentration on upconversion luminescence and temperature sensing behavior in Yb3+/Er3+ co-doped YNbO4 nanoparticles prepared via molten salt route. Chem. Eng. J. 2016, 297, 26–34.

[43]

Xiong, T.; Yu, Z. G.; Wu, H. J.; Du, Y. H.; Xie, Q. D.; Chen, J. S.; Zhang, Y. W.; Pennycook, S. J.; Lee, W. S. V.; Xue, J. M. Defect engineering of oxygen-deficient manganese oxide to achieve high-performing aqueous zinc ion battery. Adv. Energy Mater. 2019, 9, 1803815.

[44]

Zhang, A. Q.; Zhao, R.; Hu, L. Y.; Yang, R.; Yao, S. Y.; Wang, S. Y.; Yang, Z. Y.; Yan, Y. M. Adjusting the coordination environment of Mn enhances supercapacitor performance of MnO2. Adv. Energy Mater. 2021, 11, 2101412.

[45]

Zhuang, Z. C.; Li, Y.; Li, Y. H.; Huang, J. Z.; Wei, B.; Sun, R.; Ren, Y. J.; Ding, J.; Zhu, J. X.; Lang, Z. Q. et al. Atomically dispersed nonmagnetic electron traps improve oxygen reduction activity of perovskite oxides. Energy Environ. Sci. 2021, 14, 1016–1028.

[46]

Hao, Y. Z.; Wang, S. Z.; Shao, Y. L.; Wu, Y. Z.; Miao, S. D. High-energy density Li-ion capacitor with layered SnS2/reduced graphene oxide anode and BCN nanosheet cathode. Adv. Energy Mater. 2020, 10, 1902836.

[47]

Chen, P. H.; Zhou, W. Y.; Xiao, Z. J.; Li, S. Q.; Chen, H. L.; Wang, Y. C.; Wang, Z. B.; Xi, W.; Xia, X. G.; Xie, S. S. In situ anchoring MnO nanoparticles on self-supported 3D interconnected graphene scroll framework: A fast kinetics boosted ultrahigh-rate anode for Li-ion capacitor. Energy Storage Mater. 2020, 33, 298–308.

[48]

Li, H. X.; Lang, J. W.; Lei, S. L.; Chen, J. T.; Wang, K. J.; Liu, L. Y.; Zhang, T. Y.; Liu, W. S.; Yan, X. B. A high-performance sodium-ion hybrid capacitor constructed by metal-organic framework-derived anode and cathode materials. Adv. Funct. Mater. 2018, 28, 1800757.

[49]

Zhang, N. N.; Huang, S.; Yuan, Z. S.; Zhu, J. C.; Zhao, Z. F.; Niu, Z. Q. Direct self-assembly of MXene on Zn anodes for dendrite-free aqueous zinc-ion batteries. Angew. Chem., Int. Ed. 2021, 60, 2861–2865.

[50]

Sun, W.; Wang, F.; Hou, S.; Yang, C. Y.; Fan, X. L.; Ma, Z. H.; Gao, T.; Han, F. D.; Hu, R. Z.; Zhu, M. et al. Zn/MnO2 battery chemistry with H+ and Zn2+ coinsertion. J. Am. Chem. Soc. 2017, 139, 9775–9778.

[51]

Wu, B. K.; Zhang, G. B.; Yan, M. Y.; Xiong, T. F.; He, P.; He, L.; Xu, X.; Mai, L. Graphene scroll-coated α-MnO2 nanowires as high-performance cathode materials for aqueous Zn-ion battery. Small 2018, 14, 1703850.

[52]

Alfaruqi, M. H.; Gim, J.; Kim, S.; Song, J. J.; Pham, D. T.; Jo, J.; Xiu, Z.; Mathew, V.; Kim, J. A layered δ-MnO2 nanoflake cathode with high zinc-storage capacities for eco-friendly battery applications. Electrochem. Commun. 2015, 60, 121–125.

[53]

Long, J.; Gu, J. X.; Yang, Z. H.; Mao, J. F.; Hao, J. N.; Chen, Z. F.; Guo, Z. P. Highly porous, low band-gap NixMn3−xO4 (0.55 ≤ x ≤ 1.2) spinel nanoparticles with in situ coated carbon as advanced cathode materials for zinc-ion batteries. J. Mater. Chem. A 2019, 7, 17854–17866.

[54]

Ma, Y.; Ma, Y. J.; Diemant, T.; Cao, K. C.; Liu, X.; Kaiser, U.; Behm, R. J.; Varzi, A.; Passerini, S. Unveiling the intricate intercalation mechanism in manganese sesquioxide as positive electrode in aqueous Zn-metal battery. Adv. Energy Mater. 2021, 11, 2100962.

[55]

Tang, H.; Chen, W. H.; Li, N.; Hu, Z. L.; Xiao, L.; Xie, Y. J.; Xi, L. J.; Ni, L.; Zhu, Y. R. Layered MnO2 nanodots as high-rate and stable cathode materials for aqueous zinc-ion storage. Energy Storage Mater. 2022, 48, 335–343.

[56]

Yu, W. T.; Shang, W. X.; He, Y.; Zhao, Z. X.; Ma, Y. Y.; Tan, P. Unraveling the mechanism of non-uniform zinc deposition in rechargeable zinc-based batteries with vertical orientation. Chem. Eng. J. 2022, 431, 134032.

[57]

Luo, H.; Wang, L. P.; Ren, P. H.; Jian, J. H.; Liu, X.; Niu, C. J.; Chao, D. L. Atomic engineering promoted electrooxidation kinetics of manganese-based cathode for stable aqueous zinc-ion batteries. Nano Res. 2022, 15, 8603–8612.

[58]

Han, M. M.; Huang, J. W.; Liang, S. Q.; Shan, L. T.; Xie, X. S.; Yi, Z. Y.; Wang, Y. R.; Guo, S.; Zhou, J. Oxygen defects in β-MnO2 enabling high-performance rechargeable aqueous zinc/manganese dioxide battery. iScience 2020, 23, 100797.

[59]

Zhang, Y. X.; Cui, X. S.; Liu, Y. P.; Cheng, S. T.; Cui, P.; Wu, Y.; Sun, Z. H.; Shao, Z. P.; Fu, J. C.; Xie, E. Q. Aqueous Zn-MnO2 battery: Approaching the energy storage limit with deep Zn2+ pre-intercalation and revealing the ions insertion/extraction mechanisms. J. Energy Chem. 2022, 67, 225–232.

[60]

Shi, M. J.; Xiao, P.; Yang, C.; Sheng, Y.; Wang, B.; Jiang, J. T.; Zhao, L. P.; Yan, C. Scalable gas-phase synthesis of 3D microflowers confining MnO2 nanowires for highly-durable aqueous zinc-ion batteries. J. Power Sources 2020, 463, 228209.

[61]

Si, G. R.; Yang, F.; He, T.; Kong, X. J.; Wu, W.; Li, T. C.; Wang, K. C.; Li, J. R. Enhancing proton conductivity in Zr-MOFs through tuning metal cluster connectivity. J. Mater. Chem. A 2022, 10, 1236–1240.

[62]

Xu, H.; Tao, S. S.; Jiang, D. L. Proton conduction in crystalline and porous covalent organic frameworks. Nat. Mater. 2016, 15, 722–726.

Nano Research
Pages 9488-9495
Cite this article:
Wang C, Yang H, Wang B, et al. Dual cation doping enabling simultaneously boosted capacity and rate capability of MnO2 cathodes for Zn//MnO2 batteries. Nano Research, 2023, 16(7): 9488-9495. https://doi.org/10.1007/s12274-023-5717-8
Topics:

1057

Views

14

Crossref

13

Web of Science

15

Scopus

0

CSCD

Altmetrics

Received: 13 March 2023
Revised: 04 April 2023
Accepted: 05 April 2023
Published: 29 April 2023
© Tsinghua University Press 2023
Return