AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

How water molecules occupying the active site of a single-atom catalyst affect the electrochemical reduction of carbon dioxide

Jia Zhao1Di Liu2Fenfei Wei1Weng Fai Ip3Hui Pan2,3Sen Lin1( )
State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350002, China
Institute of Applied Physics and Materials Engineering, University of Macau, Taipa 999078, Macao, China
Department of Physics and Chemistry, Faculty of Science and Technology, University of Macau, Taipa 999078, Macao, China
Show Author Information

Graphical Abstract

This work depicts the dynamic evolution of different CO2 electroreduction reaction (CO2RR) intermediates at the active site of single-atom catalyst in an explicit solvent environment, revealing the important influence of the solvent molecules on the energy and conformation of CO2RR.

Abstract

In single-atom catalysts (SACs), the single atoms are often exposed as protrusions above the substrate. The solvent molecules in the electrocatalytic environment can interact or even bind to these coordination-unsaturated single atoms and thus influence the reaction process, but this has not been studied in depth. In this work, we systematically investigate the thermodynamics of CO2 reduction reaction (CO2RR) to CO over MoS2-supported single metal atom catalysts (TM@MoS2, TM = transition metal) under vacuum and explicit solvent environments using density functional theory. In addition, the ab initio molecular dynamics results show that explicit H2O molecules can coordinate to the TM site and undergo competitive adsorption with the CO2RR intermediates, which significantly affects the energy and conformation of the CO2RR pathway. Electronic structure analysis reveals that the occupying H2O molecules change the electronic state of single atom and further influence the adsorption strength of different CO2RR intermediates. Our work shows that water molecules can not only act as ligands to influence the electronic state of TM, but also affect the energy and conformation of CO2RR intermediates, which highlights the important role of occupying H2O molecules at the single-atom sites in CO2RR and provides useful insights for the design of SACs for efficient CO2RR.

Electronic Supplementary Material

Download File(s)
12274_2023_5718_MOESM1_ESM.pdf (2.8 MB)

References

[1]

Goeppert, A.; Czaun, M.; Surya Prakash, G. K.; Olah, G. A. Air as the renewable carbon source of the future: An overview of CO2 capture from the atmosphere. Energy Environ. Sci. 2012, 5, 7833–7853.

[2]

Solomon, S.; Plattner, G. K.; Knutti, R.; Friedlingstein, P. Irreversible climate change due to carbon dioxide emissions. Proc. Natl. Acad. Sci. USA 2009, 106, 1704–1709.

[3]

Jia, J. J.; Wang, Z. X.; Liu, Y.; Li, F. Y.; Shang, Y. C.; Liu, Y. J.; Cai, Q. H.; Zhao, J. X. A metallic Cu2N monolayer with planar tetracoordinated nitrogen as a promising catalyst for CO2 electroreduction. J. Mater. Chem. A 2022, 10, 1560–1568.

[4]

Ju, L.; Tan, X.; Mao, X.; Gu, Y. T.; Smith, S.; Du, A. J.; Chen, Z. F.; Chen, C. F.; Kou, L. Z. Controllable CO2 electrocatalytic reduction via ferroelectric switching on single atom anchored In2Se3 monolayer. Nat. Commun. 2021, 12, 5128.

[5]

Tan, D. X.; Wulan, B.; Cao, X. Y.; Zhang, J. T. Strong interactions of metal–support for efficient reduction of carbon dioxide into ethylene. Nano Energy 2021, 89, 106460.

[6]

Pan, Y.; Lin, R.; Chen, Y. J.; Liu, S. J.; Zhu, W.; Cao, X.; Chen, W. X.; Wu, K. L.; Cheong, W. C.; Wang, Y. et al. Design of single-atom Co-N5 catalytic site: A robust electrocatalyst for CO2 reduction with nearly 100% CO selectivity and remarkable stability. J. Am. Chem. Soc. 2018, 140, 4218–4221.

[7]

Zhang, Z.; Ma, C.; Tu, Y. C.; Si, R.; Wei, J.; Zhang, S. H.; Wang, Z.; Li, J. F.; Wang, Y.; Deng, D. H. Multiscale carbon foam confining single iron atoms for efficient electrocatalytic CO2 reduction to CO. Nano Res. 2019, 12, 2313–2317.

[8]

Zheng, Y.; Vasileff, A.; Zhou, X. L.; Jiao, Y.; Jaroniec, M.; Qiao, S. Z. Understanding the roadmap for electrochemical reduction of CO2 to multi-carbon oxygenates and hydrocarbons on copper-based catalysts. J. Am. Chem. Soc. 2019, 141, 7646–7659.

[9]

Nitopi, S.; Bertheussen, E.; Scott, S. B.; Liu, X. Y.; Engstfeld, A. K.; Horch, S.; Seger, B.; Stephens, I. E. L.; Chan, K.; Hahn, C. et al. Progress and perspectives of electrochemical CO2 reduction on copper in aqueous electrolyte. Chem. Rev. 2019, 119, 7610–7672.

[10]

Gao, D. F.; Arán-Ais, R. M.; Jeon, H. S.; Roldan Cuenya, B. Rational catalyst and electrolyte design for CO2 electroreduction towards multicarbon products. Nat. Catal. 2019, 2, 198–210.

[11]

Garza, A. J.; Bell, A. T.; Head-Gordon, M. Mechanism of CO2 reduction at copper surfaces: Pathways to C2 products. ACS Catal. 2018, 8, 1490–1499.

[12]

Birdja, Y. Y.; Pérez-Gallent, E.; Figueiredo, M. C.; Göttle, A. J.; Calle-Vallejo, F.; Koper, M. T. M. Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels. Nat. Energy 2019, 4, 732–745.

[13]

Liu, X.; Wang, Z. X.; Tian, Y.; Zhao, J. X. Graphdiyne-supported single iron atom: A promising electrocatalyst for carbon dioxide electroreduction into methane and ethanol. J. Phys. Chem. C 2020, 124, 3722–3730.

[14]

Yang, M. Q.; Wang, Z. X.; Jiao, D. X.; Tian, Y.; Shang, Y. C.; Yin, L. C.; Cai, Q. H.; Zhao, J. X. Tuning precise numbers of supported nickel clusters on graphdiyne for efficient CO2 electroreduction toward various multi-carbon products. J. Energy Chem. 2022, 69, 456–465.

[15]

Sun, X. H.; Tuo, Y.; Ye, C. L.; Chen, C.; Lu, Q.; Li, G. N.; Jiang, P.; Chen, S. H.; Zhu, P.; Ma, M. et al. Phosphorus induced electron localization of single iron sites for boosted CO2 electroreduction reaction. Angew. Chem., Int. Ed. 2021, 60, 23614–23618.

[16]

Yang, F. Q.; Yu, H. M.; Su, Y.; Chen, J. W.; Chen, S. X.; Zeng, Z. L.; Deng, S. G.; Wang, J. Low-coordinated Ni-N1-C3 sites atomically dispersed on hollow carbon nanotubes for efficient CO2 reduction. Nano Res. 2023, 16, 146–154.

[17]

Cao, T.; Lin, R.; Liu, S. J.; Cheong, W. C. M.; Li, Z.; Wu, K. L.; Zhu, Y. Q.; Wang, X. L.; Zhang, J.; Li, Q. H. et al. Atomically dispersed Ni anchored on polymer-derived mesh-like N-doped carbon nanofibers as an efficient CO2 electrocatalytic reduction catalyst. Nano Res. 2022, 15, 3959–3963.

[18]

Zhao, C. M.; Dai, X. Y.; Yao, T.; Chen, W. X.; Wang, X. Q.; Wang, J.; Yang, J.; Wei, S. Q.; Wu, Y. E.; Li, Y. D. Ionic exchange of metal-organic frameworks to access single nickel sites for efficient electroreduction of CO2. J. Am. Chem. Soc. 2017, 139, 8078–8081.

[19]

Lin, S.; Ye, X. X.; Johnson, R. S.; Guo, H. First-principles investigations of metal (Cu, Ag, Au, Pt, Rh, Pd, Fe, Co, and Ir) doped hexagonal boron nitride nanosheets: Stability and catalysis of CO oxidation. J. Phys. Chem. C 2013, 117, 17319–17326.

[20]

Lin, L. H.; Wei, F. F.; Jiang, R.; Huang, Y. C.; Lin, S. The role of central heteroatom in electrochemical nitrogen reduction catalyzed by polyoxometalate-supported single-atom catalyst. Nano Res. 2023, 16, 309–317.

[21]

Li, W. H.; Yang, J. R.; Wang, D. S. Long-range interactions in diatomic catalysts boosting electrocatalysis. Angew. Chem., Int. Ed. 2022, 61, e202213318.

[22]

Zhang, Z. D.; Zhu, J. X.; Chen, S. H.; Sun, W. M.; Wang, D. S. Liquid fluxional Ga single atom catalysts for efficient electrochemical CO2 reduction. Angew. Chem., Int. Ed. 2023, 62, e202215136.

[23]

Wang, J.; Zheng, M. Y.; Zhao, X.; Fan, W. L. Structure–performance descriptors and the role of the axial oxygen atom on M-N4-C single-atom catalysts for electrochemical CO2 reduction. ACS Catal. 2022, 12, 5441–5454.

[24]

Sun, M. Z.; Huang, B. L. Neighboring effects of active sites for CO2 transition to C1 products on atomic catalysts. Nano Energy 2022, 99, 107398.

[25]

Jiang, J. C.; Chen, J. C.; Zhao, M. D.; Yu, Q.; Wang, Y. G.; Li, J. Rational design of copper-based single-atom alloy catalysts for electrochemical CO2 reduction. Nano Res. 2022, 15, 7116–7123.

[26]

Jing, H. Y.; Zhu, P.; Zheng, X. B.; Zhang, Z. D.; Wang, D. S.; Li, Y. D. Theory-oriented screening and discovery of advanced energy transformation materials in electrocatalysis. Adv. Powder Mater. 2022, 1, 100013.

[27]

Ringe, S.; Hörmann, N. G.; Oberhofer, H.; Reuter, K. Implicit solvation methods for catalysis at electrified interfaces. Chem. Rev. 2022, 122, 10777–10820.

[28]

Gauthier, J. A.; Ringe, S.; Dickens, C. F.; Garza, A. J.; Bell, A. T.; Head-Gordon, M.; Nørskov, J. K.; Chan, K. Challenges in modeling electrochemical reaction energetics with polarizable continuum models. ACS Catal. 2019, 9, 920–931.

[29]

Chen, J. W.; Zhang, Z. S.; Yan, H. M.; Xia, G. J.; Cao, H.; Wang, Y. G. Pseudo-adsorption and long-range redox coupling during oxygen reduction reaction on single atom electrocatalyst. Nat. Commun. 2022, 13, 1734.

[30]

Zhao, X. H.; Liu, Y. Y. Origin of selective production of hydrogen peroxide by electrochemical oxygen reduction. J. Am. Chem. Soc. 2021, 143, 9423–9428.

[31]

Cao, H.; Xia, G. J.; Chen, J. W.; Yan, H. M.; Huang, Z.; Wang, Y. G. Mechanistic insight into the oxygen reduction reaction on the Mn-N4/C single-atom catalyst: The role of the solvent environment. J. Phys. Chem. C 2020, 124, 7287–7294.

[32]

Wang, F. T.; Xie, W. B.; Yang, L. J.; Xie, D. Q.; Lin, S. Revealing the importance of kinetics in N-coordinated dual-metal sites catalyzed oxygen reduction reaction. J. Catal. 2021, 396, 215–223.

[33]

Xie, K.; Wang, F. T.; Wei, F. F.; Zhao, J.; Lin, S. Revealing the origin of nitrogen electroreduction activity of molybdenum disulfide supported iron atoms. J. Phys. Chem. C 2022, 126, 5180–5188.

[34]

Hossain, M. D.; Huang, Y. F.; Yu, T. H.; Goddard III, W. A.; Luo, Z. T. Reaction mechanism and kinetics for CO2 reduction on nickel single atom catalysts from quantum mechanics. Nat. Commun. 2020, 11, 2256.

[35]

Hu, X.; Yao, S.; Chen, L. T.; Zhang, X.; Jiao, M. G.; Lu, Z. Y.; Zhou, Z. Understanding the role of axial O in CO2 electroreduction on NiN4 single-atom catalysts via simulations in realistic electrochemical environment. J. Mater. Chem. A 2021, 9, 23515–23521.

[36]

Wang, Y.; Liu, T. Y.; Li, Y. F. Why heterogeneous single-atom catalysts preferentially produce CO in the electrochemical CO2 reduction reaction. Chem. Sci. 2022, 13, 6366–6372.

[37]

Cheng, T.; Fortunelli, A.; Goddard III, W. A. Reaction intermediates during operando electrocatalysis identified from full solvent quantum mechanics molecular dynamics. Proc. Natl. Acad. Sci. USA 2019, 116, 7718–7722.

[38]

Montoya, J. H.; Shi, C.; Chan, K.; Nørskov, J. K. Theoretical insights into a CO dimerization mechanism in CO2 electroreduction. J. Phys. Chem. Lett. 2015, 6, 2032–2037.

[39]

Santatiwongchai, J.; Faungnawakij, K.; Hirunsit, P. Comprehensive mechanism of CO2 electroreduction toward ethylene and ethanol: The solvent effect from explicit water–Cu (100) interface models. ACS Catal. 2021, 11, 9688–9701.

[40]

Cheng, T.; Xiao, H.; Goddard III, W. A. Free-energy barriers and reaction mechanisms for the electrochemical reduction of CO on the Cu (100) surface, including multiple layers of explicit solvent at pH 0. J. Phys. Chem. Lett. 2015, 6, 4767–4773.

[41]

Zhao, X. H.; Liu, Y. Y. Unveiling the active structure of single nickel atom catalysis: Critical roles of charge capacity and hydrogen bonding. J. Am. Chem. Soc. 2020, 142, 5773–5777.

[42]

Zhang, Z.; Li, H. Y.; Wu, D. F.; Zhang, L. N.; Li, J. W.; Xu, J. L.; Lin, S.; Datye, A. K.; Xiong, H. F. Coordination structure at work: Atomically dispersed heterogeneous catalysts. Coord. Chem. Rev. 2022, 460, 214469.

[43]

Feng, Y. X.; Wan, Q.; Xiong, H. F.; Zhou, S. L.; Chen, X.; Pereira Hernandez, X. I.; Wang, Y.; Lin, S.; Datye, A. K.; Guo, H. Correlating DFT calculations with CO oxidation reactivity on Ga-doped Pt/CeO2 single-atom catalysts. J. Phys. Chem. C 2018, 122, 22460–22468.

[44]

Feng, Y. X.; Zhou, L. S.; Wan, Q.; Lin, S.; Guo, H. Selective hydrogenation of 1,3-butadiene catalyzed by a single Pd atom anchored on graphene: The importance of dynamics. Chem. Sci. 2018, 9, 5890–5896.

[45]

Gao, L. Y.; Wang, F. T.; Yu, M. A.; Wei, F. F.; Qi, J. M.; Lin, S.; Xie, D. Q. A novel phosphotungstic acid-supported single metal atom catalyst with high activity and selectivity for the synthesis of NH3 from electrochemical N2 reduction: A DFT prediction. J. Mater. Chem. A 2019, 7, 19838–19845.

[46]

Li, J.; Chen, S.; Quan, F. J.; Zhan, G. M.; Jia, F. L.; Ai, Z. H.; Zhang, L. Z. Accelerated dinitrogen electroreduction to ammonia via interfacial polarization triggered by single-atom protrusions. Chem 2020, 6, 885–901.

[47]

Yao, J. X.; Yan, J. M. Interfacial polarization triggered by single atoms boosts N2 electroreduction. Chem 2020, 6, 808–810.

[48]

Yang, T.; Song, T. T.; Zhou, J.; Wang, S. J.; Chi, D. Z.; Shen, L.; Yang, M.; Feng, Y. P. High-throughput screening of transition metal single atom catalysts anchored on molybdenum disulfide for nitrogen fixation. Nano Energy 2020, 68, 104304.

[49]

Lu, Z. S.; Cheng, Y. J.; Li, S.; Yang, Z. X.; Wu, R. Q. CO2 thermoreduction to methanol on the MoS2 supported single Co atom catalyst: A DFT study. Appl. Surf. Sci. 2020, 528, 147047.

[50]

Zheng, J. W.; Wu, S.; Lu, L. L.; Huang, C.; Ho, P. L.; Kirkland, A.; Sudmeier, T.; Arrigo, R.; Gianolio, D.; Edman Tsang, S. C. Structural insight into [Fe-S2-Mo] Motif in electrochemical reduction of N2 over Fe1-supported molecular MoS2. Chem. Sci. 2021, 12, 688–695.

[51]

Zhai, X. W.; Li, L.; Liu, X. Y.; Li, Y. F.; Yang, J. M.; Yang, D. Z.; Zhang, J. L.; Yan, H. X.; Ge, G. X. A DFT screening of single transition atoms supported on MoS2 as highly efficient electrocatalysts for the nitrogen reduction reaction. Nanoscale 2020, 12, 10035–10043.

[52]

Zheng, J. W.; Lebedev, K.; Wu, S.; Huang, C.; Ayvalı, T.; Wu, T. S.; Li, Y. Y.; Ho, P. L.; Soo, Y. L.; Kirkland, K.; Tsang, S. C. E. High loading of transition metal single atoms on chalcogenide catalysts. J. Am. Chem. Soc. 2021, 143, 7979–7990.

[53]

Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.

[54]

Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

[55]

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

[56]

Mathew, K.; Sundararaman, R.; Letchworth-Weaver, K.; Arias, T. A.; Hennig, R. G. Implicit solvation model for density-functional study of nanocrystal surfaces and reaction pathways. J. Chem. Phys. 2014, 140, 084106.

[57]

Mathew, K.; Kolluru, V. S. C.; Mula, S.; Steinmann, S. N.; Hennig, R. G. Implicit self-consistent electrolyte model in plane-wave density-functional theory. J. Chem. Phys. 2019, 151, 234101.

[58]

Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104.

[59]

Nørskov, J. K.; Rossmeisl, J.; Logadottir, A.; Lindqvist, L.; Kitchin, J. R.; Bligaard, T.; Jónsson, H. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 2004, 108, 17886–17892.

[60]

Wang, V.; Xu, N.; Liu, J. C.; Tang, G.; Geng, W. T. VASPKIT: A user-friendly interface facilitating high-throughput computing and analysis using VASP code. Comput. Phys. Commun. 2021, 267, 108033.

[61]

Woo, T. K.; Margl, P. M.; Blöchl, P. E.; Ziegler, T. A combined car-parrinello QM/MM implementation for ab initio molecular dynamics simulations of extended systems: Application to transition metal catalysis. J. Phys. Chem. B 1997, 101, 7877–7880.

[62]

Nosé, S. A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys. 1984, 81, 511–519.

[63]

Shen, H. M.; Li, Y. W.; Sun, Q. CO2 electroreduction performance of phthalocyanine sheet with Mn dimer: A theoretical study. J. Phys. Chem. C 2017, 121, 3963–3969.

[64]

Zhi, X.; Jiao, Y.; Zheng, Y.; Qiao, S. Z. Impact of interfacial electron transfer on electrochemical CO2 reduction on graphitic carbon nitride/doped graphene. Small 2019, 15, 1804224.

Nano Research
Pages 9091-9098
Cite this article:
Zhao J, Liu D, Wei F, et al. How water molecules occupying the active site of a single-atom catalyst affect the electrochemical reduction of carbon dioxide. Nano Research, 2023, 16(7): 9091-9098. https://doi.org/10.1007/s12274-023-5718-7
Topics:

850

Views

9

Crossref

9

Web of Science

7

Scopus

0

CSCD

Altmetrics

Received: 23 March 2023
Revised: 05 April 2023
Accepted: 05 April 2023
Published: 11 May 2023
© Tsinghua University Press 2023
Return