Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Developing dedicated nanomedicines to improve delivery efficacy of anti-inflammatory drugs is still a formidable challenge. In this study, we present an extremely simple yet efficient approach to obtain hybrid nanodrugs through metal-drug coordination-driven self-assembly for carrier-free drug delivery. The resulting metallo-nanodrugs exhibit well-defined morphology and high drug encapsulation capability, allowing for the combination of magnetic resonance imaging and anti-inflammatory therapy. In the case of osteoarthritis (OA), the metallo-nanodrugs remarkably alleviate synovial inflammation, preventing cartilage destruction and extracellular matrix loss. In addition, it led to significantly improved therapeutic efficacy compared with intra-articular administration of the same dose of free drugs in OA mouse model. This work provides a very simple approach for the development of anti-inflammatory nanoformulations by exploiting coordination-driven self-assembly.
Medzhitov, R. Origin and physiological roles of inflammation. Nature 2008, 454, 428–435.
Wieland, H. A.; Michaelis, M.; Kirschbaum, B. J.; Rudolphi, K. A. Osteoarthritis-an untreatable disease. Nat. Rev. Drug Discov. 2005, 4, 331–344.
Latourte, A.; Kloppenburg, M.; Richette, P. Emerging pharmaceutical therapies for osteoarthritis. Nat. Rev. Rheumatol. 2020, 16, 673–688.
Liu-Bryan, R.; Terkeltaub, R. Emerging regulators of the inflammatory process in osteoarthritis. Nat. Rev. Rheumatol. 2015, 11, 35–44.
McAlindon, T. E.; LaValley, M. P.; Harvey, W. F.; Price, L. L.; Driban, J. B.; Zhang, M.; Ward, R. J. Effect of intra-articular triamcinolone vs saline on knee cartilage volume and pain in patients with knee osteoarthritis. JAMA 2017, 317, 1967–1975.
Evans, C. H.; Kraus, V. B.; Setton, L. A. Progress in intra-articular therapy. Nat. Rev. Rheumatol. 2014, 10, 11–22.
Larsen, C.; Østergaard, J.; Larsen, S. W.; Jensen, H.; Jacobsen, S.; Lindegaard, C.; Andersen, P. H. Intra-articular depot formulation principles: Role in the management of postoperative pain and arthritic disorders. J. Pharm. Sci. 2008, 97, 4622–4654.
Rosen, H.; Abribat, T. The rise and rise of drug delivery. Nat. Rev. Drug Discov. 2005, 4, 381–385.
Williams, R. M.; Chen, S.; Langenbacher, R. E.; Galassi, T. V.; Harvey, J. D.; Jena, P. V.; Budhathoki-Uprety, J.; Luo, M. K.; Heller, D. A. Harnessing nanotechnology to expand the toolbox of chemical biology. Nat. Chem. Biol. 2021, 17, 129–137.
Datta, S.; Saha, M. L.; Stang, P. J. Hierarchical assemblies of supramolecular coordination complexes. Acc. Chem. Res. 2018, 51, 2047–2063.
Furukawa, H.; Cordova, K. E.; O’Keeffe, M.; Yaghi, O. M. The chemistry and applications of metal–organic frameworks. Science 2013, 341, 1230444.
Foo, M. L.; Matsuda, R.; Kitagawa, S. Functional hybrid porous coordination polymers. Chem. Mater. 2014, 26, 310–322.
Liu, M. J.; Ren, X. L.; Meng, X. W.; Li, H. B. Metal–organic frameworks-based fluorescent nanocomposites for bioimaging in living cells and in vivo. Chin. J. Chem. 2021, 39, 473–487.
He, C. B.; Liu, D. M.; Lin, W. B. Nanomedicine applications of hybrid nanomaterials built from metal-ligand coordination bonds: Nanoscale metal–organic frameworks and nanoscale coordination polymers. Chem. Rev. 2015, 115, 11079–11108.
Zhou, J. J.; Han, H. Y.; Liu, J. W. Nucleobase, nucleoside, nucleotide, and oligonucleotide coordinated metal ions for sensing and biomedicine applications. Nano Res. 2022, 15, 71–84.
Zhang, Z.; Li, B.; Xie, L. S.; Sang, W.; Tian, H.; Li, J.; Wang, G. H.; Dai, Y. L. Metal–phenolic network-enabled lactic acid consumption reverses immunosuppressive tumor microenvironment for sonodynamic therapy. ACS Nano 2021, 15, 16934–16945.
Imaz, I.; Rubio-Martínez, M.; García-Fernández, L.; García, F.; Ruiz-Molina, D.; Hernando, J.; Puntes, V.; Maspoch, D. Coordination polymer particles as potential drug delivery systems. Chem. Commun. 2010, 46, 4737–4739.
Horcajada, P.; Gref, R.; Baati, T.; Allan, P. K.; Maurin, G.; Couvreur, P.; Férey, G.; Morris, R. E.; Serre, C. Metal–organic frameworks in biomedicine. Chem. Rev. 2012, 112, 1232–1268.
Wang, D. D.; Jana, D.; Zhao, Y. L. Metal–organic framework derived nanozymes in biomedicine. Acc. Chem. Res. 2020, 53, 1389–1400.
Taylor-Pashow, K. M. L.; Rocca, J. D.; Xie, Z. G.; Tran, S.; Lin W. B. Postsynthetic modifications of iron-carboxylate nanoscale metal-organic frameworks for imaging and drug delivery. J. Am. Chem. Soc. 2009, 131, 14261–14263.
Zheng, H. Q.; Zhang, Y. N.; Liu, L. F.; Wan, W.; Guo, P.; Nyström, A. M.; Zou, X. D. One-pot synthesis of metal–organic frameworks with encapsulated target molecules and their applications for controlled drug delivery. J. Am. Chem. Soc. 2016, 138, 962–968.
Wang, P.; Zhou, F.; Yin, X.; Xie, Q. J.; Song, G. S.; Zhang, X. B. Nanovoid-confinement and click-activated nanoreactor for synchronous delivery of prodrug pairs and precise photodynamic therapy. Nano Res. 2022, 15, 9264–9273.
Ma, Y.; Li, X. Y.; Li, A. J.; Yang, P.; Zhang, C. Y.; Tang, B. H2S-activable MOF nanoparticle photosensitizer for effective photodynamic therapy against cancer with controllable singlet-oxygen release. Angew. Chem., Int. Ed. 2017, 56, 13752–13756.
Zhang, P. F.; Wang, J. Q.; Chen, H.; Zhao, L.; Chen, B. B.; Chu, C. C.; Liu, H.; Qin, Z. N.; Liu, J. Y.; Tan, Y. Z. et al. Tumor microenvironment-responsive ultrasmall nanodrug generators with enhanced tumor delivery and penetration. J. Am. Chem. Soc. 2018, 140, 14980–14989.
Zhu, W. J.; Chen, Q.; Jin, Q. T.; Chao, Y.; Sun, L. L.; Han, X.; Xu, J.; Tian, L. L.; Zhang, J. L.; Liu, T. et al. Sonodynamic therapy with immune modulatable two-dimensional coordination nanosheets for enhanced anti-tumor immunotherapy. Nano Res. 2021, 14, 212–221.
Cheng, K.; Liu, B.; Zhang, X. S.; Zhang, R. Y.; Zhang, F.; Ashraf, G.; Fan, G. Q.; Tian, M. Y.; Sun, X.; Yuan, J. et al. Biomimetic material degradation for synergistic enhanced therapy by regulating endogenous energy metabolism imaging under hypothermia. Nat. Commun. 2022, 13, 4567.
Luo, Z. C.; Liang, X. Q.; He, T.; Qin, X.; Li, X. C.; Li, Y. S.; Li, L.; Loh, X. J.; Gong, C. Y.; Liu, X. G. Lanthanide-nucleotide coordination nanoparticles for STING activation. J. Am. Chem. Soc. 2022, 144, 16366–16377.
Zhou, H. S.; Wang, Y. Y.; Hou, Y. Q.; Zhang, Z. K.; Wang, Q.; Tian, X. D.; Lu, H. Co-delivery of Cisplatin and chlorin e6 by poly(phosphotyrosine) for synergistic chemotherapy and photodynamic therapy. Chin. J. Chem. 2022, 40, 2428–2436.
Li, M. Y.; Wang, C. L.; Di, Z. H.; Li, H.; Zhang, J. F.; Xue, W. T.; Zhao, M. P.; Zhang, K.; Zhao, Y. L.; Li, L. L. Engineering multifunctional DNA hybrid nanospheres through coordination-driven self-assembly. Angew. Chem., Int. Ed. 2019, 58, 1350–1354.
Liu, B.; Hu, F.; Zhang, J. F.; Wang, C. L.; Li, L. L. A biomimetic coordination nanoplatform for controlled encapsulation and delivery of drug-gene combinations. Angew. Chem., Int. Ed. 2019, 58, 8804–8808.
Liu, C. Z.; Chen, Y. X.; Zhao, J.; Wang, Y.; Shao, Y. L.; Gu, Z. J.; Li, L. L.; Zhao, Y. L. Self-assembly of copper-DNAzyme nanohybrids for dual-catalytic tumor therapy. Angew. Chem., Int. Ed. 2021, 60, 14324–14328.
Zou, Z.; He, L. B.; Deng, X. X.; Wang, H. X.; Huang, Z. Y.; Xue, Q.; Qing, Z. H.; Lei, Y. L.; Yang, R. H.; Liu, J. W. Zn2+-coordination-driven RNA assembly with retained integrity and biological functions. Angew. Chem., Int. Ed. 2021, 60, 22970–22976.
Dubashynskaya, N. V.; Bokatyi, A. N.; Skorik, Y. A. Dexamethasone conjugates: Synthetic approaches and medical prospects. Biomedicines 2021, 9, 341.
Yamashita, T.; Hayes, P. Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials. Appl. Surf. Sci. 2008, 254, 2441–2449.
Pan, Q.; Xu, Q. G.; Boylan, N. J.; Lamb, N. W.; Emmert, D. G.; Yang, J. C.; Tang, L.; Heflin, T.; Alwadani, S.; Eberhart, C. G. et al. Corticosteroid-loaded biodegradable nanoparticles for prevention of corneal allograft rejection in rats. J. Control. Release 2015, 201, 32–40.
Chen, Y. J.; Li, P.; Modica, J. A.; Drout, R. J.; Farha, O. K. Acid-resistant mesoporous metal–organic framework toward oral insulin delivery: Protein encapsulation, protection, and release. J. Am. Chem. Soc. 2018, 140, 5678–5681.
Lu, Y. C.; Yeh, W. C.; Ohashi, P. S. LPS/TLR4 signal transduction pathway. Cytokine 2008, 42, 145–151.
Bode, J. G.; Ehlting, C.; Häussinger, D. The macrophage response towards LPS and its control through the p38MAPK-STAT3 axis. Cell. Signal. 2012, 24, 1185–1194.
Gilroy, D. W.; Colville-Nash, P. R. New insights into the role of COX 2 in inflammation. J. Mol. Med. 2000, 78, 121–129.
Zhao, C. Y.; Chen, J. X.; Ye, J. M.; Li, Z.; Su, L. C.; Wang, J. Q.; Zhang, Y.; Chen, J. H.; Yang, H. H.; Shi, J. J. et al. Structural transformative antioxidants for dual-responsive anti-inflammatory delivery and photoacoustic inflammation imaging. Angew. Chem., Int. Ed. 2021, 60, 14458–14466.
Mittal, M.; Siddiqui, M. R.; Tran, K.; Reddy, S. P.; Malik, A. B. Reactive oxygen species in inflammation and tissue injury. Antioxid. Redox Signal. 2014, 20, 1126–1167.
Zhao, P. C.; Xia, X. F.; Xu, X. Y.; Leung, K. K. C.; Rai, A.; Deng, Y. R.; Yang, B. G.; Lai, H. S.; Peng, X.; Shi, P. et al. Nanoparticle-assembled bioadhesive coacervate coating with prolonged gastrointestinal retention for inflammatory bowel disease therapy. Nat. Commun. 2021, 12, 7162.
Jiang, K. Y.; Weaver, J. D.; Li, Y. J. Y.; Chen, X. J.; Liang, J. P.; Stabler, C. L. Local release of dexamethasone from macroporous scaffolds accelerates islet transplant engraftment by promotion of anti-inflammatory M2 macrophages. Biomaterials 2017, 114, 71–81.
Loeser, R. F. Molecular mechanisms of cartilage destruction: Mechanics, inflammatory mediators, and aging collide. Arthrit. Rheumatol. 2016, 54, 1357–1360.
Li, M. Z.; Yin, H.; Yan, Z. N.; Li, H. Y.; Wu, J.; Wang, Y.; Wei, F.; Tian, G. Z.; Ning, C.; Li, H. et al. The immune microenvironment in cartilage injury and repair. Acta Biomater. 2022, 140, 23–42.
Glasson, S. S.; Chambers, M. G.; Van Den Berg, W. B.; Little, C. B. The OARSI histopathology initiative-recommendations for histological assessments of osteoarthritis in the mouse. Osteoarthritis Cartilage 2010, 18 Suppl 3, S17–S23.
Chen, H. M.; Qin, Z. N.; Zhao, J. M.; He, Y.; Ren, E.; Zhu, Y.; Liu, G.; Mao, C. B.; Zheng, L. Cartilage-targeting and dual MMP-13/pH responsive theranostic nanoprobes for osteoarthritis imaging and precision therapy. Biomaterials 2019, 225, 119520.