AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Halogenated thiophene substitutions on quinoxaline unit to achieve morphology optimization in efficient organic solar cells

Dingding Qiu1,2,3Jianqi Zhang1Kun Lu1,3( )Zhixiang Wei1,3( )
CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, China
Sino-Danish Center for Education and Research, Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China
University of Chinese Academy of Sciences, Beijing 100049, China
Show Author Information

Graphical Abstract

Halogenated thiophene units were introduced into the quinoxaline-based acceptors. Qx-Br showed the most favorable film morphology and efficient carrier generation/transport, leading to an outstanding power conversion efficiency (PCE) of 17.42%. Ternary blends of PM6:Qx-Br:Y6 can further optimize light utilization, reaching a high PCE of 18.36% with an open-circuit voltage (VOC) of 0.87 V.

Abstract

Halogenated thiophenes are generally used units for constructing organic semiconductor materials for photovoltaic applications. Here, we introduced thiophene, 2-bromothiophene, and 2-chlorothiophene units to the central core of quinoxaline-based acceptors and obtained three acceptors, Qx-H, Qx-Br, and Qx-Cl, respectively. Compared with Qx-H, Qx-Br and Qx-Cl showed enhanced absorption, down-shifted energy levels, improved crystallinity, and reduced energy disorder. The improved crystallinity significantly optimized the blend morphology, leading to efficient charge generation and transport and, therefore, less bimolecular recombination. Eventually, PM6:Qx-Br-based devices exhibited an outstanding power conversion efficiency of 17.42% with a high open-circuit voltage (VOC) of 0.915 V. Furthermore, Y6 was introduced into the PM6:Qx-Br binary system to improve the light utilization, and the resulting ternary devices delivered a high PCE of 18.36%. This study demonstrated the great potential of halogenated thiophene substitution in quinoxaline-based acceptors for building high-performance organic solar cell acceptor materials.

Electronic Supplementary Material

Download File(s)
12274_2023_5723_MOESM1_ESM.pdf (982.6 KB)

References

[1]

Shen, Y. F.; Zhang, H.; Zhang, J. Q.; Tian, C. Y.; Shi, Y. N.; Qiu, D. D.; Zhang, Z. Q.; Lu, K.; Wei, Z. X. In situ absorption characterization guided slot-die-coated high-performance large-area flexible organic solar cells and modules. Adv. Mater. 2023, 35, 2209030.

[2]

Chang, Y. L.; Zhu, X. W.; Zhu, L. Y.; Wang, Y. H.; Yang, C.; Gu, X. R.; Zhang, Y. X.; Zhang, J. Q.; Lu, K.; Sun, X. N. et al. Regioregular narrow bandgap copolymer with strong aggregation ability for high-performance semitransparent photovoltaics. Nano Energy 2021, 86, 106098.

[3]

Ma, L. J.; Zhang, S. Q.; Ren, J. Z.; Wang, G. L.; Li, J. Y.; Chen, Z. H.; Yao, H. F.; Hou, J. H. Design of a fully non-fused bulk heterojunction toward efficient and low-cost organic photovoltaics. Angew. Chem., Int. Ed. 2023, 62, e202214088.

[4]

Chen, T.; Wang, S. T.; Yang, Z. B.; Feng, Q. Y.; Sun, X. M.; Li, L.; Wang, Z. S.; Peng, H. S. Flexible, light-weight, ultrastrong, and semiconductive carbon nanotube fibers for a highly efficient solar cell. Angew. Chem., Int. Ed. 2011, 50, 1815–1819.

[5]

Chen, H.; Jeong, S. Y.; Tian, J. F.; Zhang, Y. D.; Naphade, D. R.; Alsufyani, M.; Zhang, W. M.; Griggs, S.; Hu, H. L.; Barlow S. et al. A 19% efficient and stable organic photovoltaic device enabled by a guest nonfullerene acceptor with fibril-like morphology. Energy Environ. Sci. 2023, 16, 1062–1070.

[6]

Zhou, M. W.; Liao, C. T.; Duan, Y. W.; Xu, X. P.; Yu, L. Y.; Li, R. P.; Peng, Q. 19.10% efficiency and 80.5% fill factor layer-by-layer organic solar cells realized by 4-bis(2-thienyl)pyrrole-2,5-dione based polymer additives for inducing vertical segregation morphology. Adv. Mater. 2023, 35, 2208279.

[7]

Li, D. H.; Deng, N.; Fu, Y. W.; Guo, C. H.; Zhou, B. J.; Wang, L.; Zhou, J.; Liu, D.; Li, W.; Wang, K. et al. Fibrillization of non-fullerene acceptors enables 19% efficiency pseudo-bulk heterojunction organic solar cells. Adv. Mater. 2023, 35, 2208211.

[8]

Xiao, C.; Wang, X. C.; Zhong, T.; Zhou, R. X.; Zheng, X. F.; Liu, Y. R.; Hu, T. Y.; Luo, Y. X.; Sun, F. B.; Xiao, B. et al. Hybrid cycloalkyl-alkyl chain-based symmetric/asymmetric acceptors with optimized crystal packing and interfacial exciton properties for efficient organic solar cells. Adv. Sci. 2023, 10, 2206580.

[9]

Li, C.; Zhou, J. D.; Song, J. L.; Xu, J. Q.; Zhang, H. T.; Zhang, X. N.; Guo, J.; Zhu, L.; Wei, D. H.; Han, G. C. et al. Non-fullerene acceptors with branched side chains and improved molecular packing to exceed 18% efficiency in organic solar cells. Nat. Energy 2021, 6, 605–613.

[10]

Kong, X. L.; Zhu, C.; Zhang, J. Y.; Meng, L.; Qin, S. C.; Zhang, J. Q.; Li, J.; Wei, Z. X.; Li, Y. F. The effect of alkyl substitution position of thienyl outer side chains on photovoltaic performance of A-DA’D-A type acceptors. Energy Environ. Sci. 2022, 15, 2011–2020.

[11]

Shi, Y. N.; Chang, Y. L.; Lu, K.; Chen, Z. H.; Zhang, J. Q.; Yan, Y. J.; Qiu, D. D.; Liu, Y. N.; Adil, M. A.; Ma, W. et al. Small reorganization energy acceptors enable low energy losses in non-fullerene organic solar cells. Nat. Commun. 2022, 13, 3256.

[12]

Zhao, X.; An, Q. S.; Zhang, H.; Yang, C.; Mahmood, A.; Jiang, M. Y.; Jee, M. H.; Fu, B.; Tian, S. Y.; Woo, H. Y. et al. Double asymmetric core optimizes crystal packing to enable selenophene-based acceptor with over 18% efficiency in binary organic solar cells. Angew. Chem., Int. Ed. 2023, 62, e202216340.

[13]

Meng, F.; Qin, Y.; Zheng, Y. T.; Zhao, Z. H.; Sun, Y. N.; Yang, Y. G.; Gao, K.; Zhao, D. B. Structural fusion yields guest acceptors that enable Ternary organic solar cells with 18.77% efficiency. Angew. Chem., Int. Ed. 2023, 62, e202217173.

[14]

Shang, A.; Luo, S. W.; Zhang, J. Q.; Zhao, H.; Xia, X. X.; Pan, M. G.; Li, C.; Chen, Y. Z.; Yi, J. C.; Lu, X. H. et al. Over 18% binary organic solar cells enabled by isomerization of non-fullerene acceptors with alkylthiophene side chains. Sci. China: Chem. 2022, 65, 1758–1766.

[15]

Murugan, P.; Hu, T.; Hu, X. T.; Chen, Y. W. Fused ring A-DA’D-A (Y-series) non-fullerene acceptors: Recent developments and design strategies for organic photovoltaics. J. Mater. Chem. A 2022, 10, 17968–17987.

[16]

Chen, Y. Z.; Ma, R. J.; Liu, T.; Xiao, Y. Q.; Kim, H. K.; Zhang, J. Q.; Ma, C.; Sun, H. L.; Bai, F. J.; Guo, X. G. et al. Side-chain engineering on Y-series acceptors with chlorinated end groups enables high-performance organic solar cells. Adv. Energy Mater. 2021, 11, 2003777.

[17]

Xie, L.; Lan, A.; Gu, Q.; Yang, S. C.; Song, W.; Ge, J. F.; Zhou, R.; Chen, Z. Y.; Zhang, J. Q.; Zhang, X. L. et al. Alkoxy substitution on asymmetric conjugated molecule enabling over 18% efficiency in ternary organic solar cells by reducing nonradiative voltage loss. ACS Energy Lett. 2023, 8, 361–371.

[18]

Xie, L.; Zhang, J. S.; Song, W.; Ge, J. F.; Li, D. D.; Zhou, R.; Zhang, J. Q.; Zhang, X. L.; Yan, D. B.; Tang, B. C. et al. Rational tuning of intermolecular and intramolecular interactions enabling high-efficiency indoor organic photovoltaics. Nano Energy 2022, 99, 107414.

[19]

Xia, Z. H.; Zhang, J. S.; Gao, X.; Song, W.; Ge, J. F.; Xie, L.; Zhang, X. L.; Liu, Z. T.; Ge, Z. Y. Fine-tuning the dipole moment of asymmetric non-fullerene acceptors enabling efficient and stable organic solar cells. ACS Appl. Mater. Interfaces 2021, 13, 23983–23992.

[20]

Zhang, S. P.; Ma, X. L.; Niu, L. B.; Jeong, S. Y.; Woo, H. Y.; Zhou, Z. J.; Zhang, F. J. 18.66% Efficiency of polymer solar cells employing two nonfullerene acceptors with fluorine or chlorine substitution. Sol. RRL 2023, 7, 2200957.

[21]

Zhou, Z. C.; Liu, W. R.; Zhou, G. Q.; Zhang, M.; Qian, D. P.; Zhang, J. Y.; Chen, S. S.; Xu, S. J.; Yang, C.; Gao, F. et al. Subtle molecular tailoring induces significant morphology optimization enabling over 16% efficiency organic solar cells with efficient charge generation. Adv. Mater. 2020, 32, 1906324.

[22]

Liu, F.; Zhou, L.; Liu, W. R.; Zhou, Z. C.; Yue, Q. H.; Zheng, W. Y.; Sun, R.; Liu, W. Y.; Xu, S. J.; Fan, H. J. et al. Organic solar cells with 18% efficiency enabled by an alloy acceptor: A two-in-one strategy. Adv. Mater. 2021, 33, 2100830.

[23]

Liu, W. R.; Zhang, J. Y.; Xu, S. J.; Zhu, X. Z. Efficient organic solar cells achieved at a low energy loss. Sci. Bull. 2019, 64, 1144–1147.

[24]

Chen, Z. Y.; Ge, J. F.; Guo, Y. T.; Zhao, M. Y.; Shi, J. Y.; Qiu, Y.; Zhou, E. J.; Ge, Z. Y. Modification on the quinoxaline unit to achieve high open-circuit voltage and morphology optimization for organic solar cells. ACS Energy Lett. 2022, 7, 3432–3438.

[25]

Chen, H. B.; Liang, H. Z.; Guo, Z. Q.; Zhu, Y.; Zhang, Z.; Li, Z. X.; Cao, X. J.; Wang, H. H.; Feng, W. Y.; Zou, Y. L. et al. Central unit fluorination of non-fullerene acceptors enables highly efficient organic solar cells with over 18% efficiency. Angew. Chem., Int. Ed. 2022, 61, e202209580.

[26]

Busireddy, M. R.; Chen, T. W.; Huang, S. C.; Su, Y. J.; Wang, Y. M.; Chuang, W. T.; Chen, J. T.; Hsu, C. S. PBDB-T-based binary-OSCs achieving over 15. 83% efficiency via end-group functionalization and alkyl-chain engineering of quinoxaline-containing non-fullerene acceptors. ACS Appl. Mater. Interfaces 2022, 14, 41264–41274.

[27]

Huang, J. F.; Li, S. S.; Qin, J. Z.; Xu, L.; Zhu, X. Z.; Yang, L. M. Facile modification of a noncovalently fused-ring electron acceptor enables efficient organic solar cells. ACS Appl. Mater. Interfaces 2021, 13, 45806–45814.

[28]

Guo, L. Z.; Li, Q. D.; Ren, J. X.; Xu, Y. J.; Zhang, J. B.; Zhang, K.; Cai, Y. P.; Liu, S. J; Huang, F. Halogenated thiophenes serve as solvent additives in mediating morphology and achieving efficient organic solar cells. Energy Environ. Sci. 2022, 15, 5137–5148.

[29]

Yuan, G. Z.; Fan, H. J.; Wan, S. S.; Jiang, Z.; Liu, Y. Q.; Liu, K. K.; Bai, H. R.; Zhu, X. Z.; Wang, J. L. A two-dimensional halogenated thiophene side-chain strategy for balancing Voc and Jsc and improving efficiency of non-fullerene small molecule acceptor-based organic solar cells. J. Mater. Chem. A 2019, 7, 20274–20284.

[30]

Zhang, J. Q.; Li, Y. K.; Hu, H. W.; Zhang, G. Y.; Ade, H.; Yan, H. Chlorinated thiophene end groups for highly crystalline alkylated non-fullerene acceptors toward efficient organic solar cells. Chem. Mater. 2019, 31, 6672–6676.

[31]

Wang, H.; Lu, H.; Chen, Y. N.; Ran, G. L.; Zhang, A. D.; Li, D. W.; Yu, N.; Zhang, Z.; Liu, Y. H.; Xu, X. J. et al. Chlorination enabling a low-cost benzodithiophene-based wide-bandgap donor polymer with an efficiency of over 17%. Adv. Mater. 2022, 34, 2105483.

[32]

Lu, H.; Li, D. W.; Ran, G. L.; Chen, Y. N.; Liu, W. L.; Wang, H.; Li, S.; Wang, X. D.; Zhang, W. K.; Liu, Y. H. et al. Designing high-performance wide bandgap polymer donors by the synergistic effect of introducing carboxylate and fluoro substituents. ACS Energy Lett. 2022, 7, 3927–3935.

[33]

Wang, H.; Lu, H.; Chen, Y. N.; Zhang, A. D.; Liu, Y. Q.; Li, D. W.; Liu, Y. H.; Xu, X. J.; Bo, Z. S. A versatile planar building block with C2V symmetry for high-performance non-halogenated solvent processable polymer donors. Adv. Energy Mater. 2022, 12, 2104028.

[34]

Wang, H.; Lu, H.; Chen, Y. N.; Zhang, A. D.; Liu, Y. Q.; Zhang, C. E.; Liu, Y. H.; Xu, X. J.; Bo, Z. S. Effect of polymer chain regularity on the photovoltaic performance of organic solar cells. Chin. J. Polym. Sci. 2022, 40, 996–1002.

[35]

Sun, H. L.; Liu, T.; Yu, J. W.; Lau, T. K.; Zhang, G. Y.; Zhang, Y. J.; Su, M. Y.; Tang, Y. M.; Ma, R. J.; Liu, B. et al. A monothiophene unit incorporating both fluoro and ester substitution enabling high-performance donor polymers for non-fullerene solar cells with 16.4% efficiency. Energy Environ. Sci. 2019, 12, 3328–3337.

[36]

Weng, K. K.; Ye, L. L ; Zhu, L.; Xu, J. Q.; Zhou, J. J.; Feng, X.; Lu, G. H.; Tan, S. T.; Liu, F.; Sun, Y. M. Optimized active layer morphology toward efficient and polymer batch insensitive organic solar cells. Nat. Commun. 2020, 11, 2855.

[37]

Li, M. J.; Zeng, Z. M. Y.; Fan, B. B.; Zhong, W. K.; Zhang, D. F.; Zhang, X. N.; Zhang, Y.; Ying, L.; Huang, F.; Cao, Y. Tailoring the side chain of imide-functional benzotriazole based polymers to achieve internal quantum efficiency approaching 100%. J. Mater. Chem. A 2020, 8, 23519–23525.

[38]

Liu, Q. S.; Jiang, Y. F.; Jin, K.; Qin, J. Q.; Xu, J. G.; Li, W. T.; Xiong, J.; Liu, J. F.; Xiao, Z.; Sun, K. et al. 18% efficiency organic solar cells. Sci. Bull. 2020, 65, 272–275.

[39]

Zhang, M. J.; Guo, X.; Ma, W.; Ade, H.; Hou, J. H. A large-bandgap conjugated polymer for versatile photovoltaic applications with high performance. Adv. Mater. 2015, 27, 4655–4660.

[40]

Zhu, C.; Meng, L.; Zhang, J. Y.; Qin, S. C.; Lai, W. B.; Qiu, B. B.; Yuan, J.; Wan, Y.; Huang, W. C.; Li, Y. F. A quinoxaline-based D-A copolymer donor achieving 17.62% efficiency of organic solar cells. Adv. Mater. 2021, 33, 2100474.

[41]

Zhang, W. Q.; Sun, C. K.; Qin, S. C.; Shang, Z. Y.; Li, S. M.; Zhu, C.; Yang, G.; Meng, L.; Li, Y. F. A cost-effective alpha-fluorinated bithienyl benzodithiophene unit for high-performance polymer donor material. ACS Appl. Mater. Interfaces 2021, 13, 55403–55411.

[42]

Duan, T. N.; Gao, J.; Xu, T. L.; Kan, Z. P.; Chen, W. J.; Singh, R.; Kini, G. P.; Zhong, C.; Yu, D. H.; Xiao, Z. G. et al. Simple organic donors based on halogenated oligothiophenes for all small molecule solar cells with efficiency over 11%. J. Mater. Chem. A 2020, 8, 5843–5847.

[43]

Duan, T. N.; Yang, Q. G.; Sun, Z. Y.; Chen, Q. Q.; Zhang, G. Q.; Hu, D. Q.; Oh, J.; Yang, C.; Lv, J.; Feng, B. et al. Oligothiophene electron donor and electron acceptor for all small molecule organic solar cells with efficiency over 9%. Chem. Eng. J. 2023, 456, 141006.

[44]

Jeong, D.; Kim, G. U.; Lee, D.; Seo, S.; Lee, S.; Han, D.; Park, H.; Ma, B. W.; Cho, S.; Kim, B. J. Sequentially fluorinated polythiophene donors for high-performance organic solar cells with 16.4% efficiency. Adv. Energy Mater. 2022, 12, 2201603.

[45]

Liang, Z. Q.; Li, M. M.; Wang, Q.; Qin, Y. P.; Stuard, S. J.; Peng, Z. X.; Deng, Y. F.; Ade, H.; Ye, L.; Geng, Y. H. Optimization requirements of efficient polythiophene: Nonfullerene organic solar cells. Joule 2020, 4, 1278–1295.

[46]

Lin, Y. Z.; Zhao, F. W.; Prasad, S. K. K.; Chen, J. D.; Cai, W. Z.; Zhang, Q. Q.; Chen, K.; Wu, Y.; Ma, W.; Gao, F. et al. Balanced partnership between donor and acceptor components in nonfullerene organic solar cells with > 12% efficiency. Adv. Mater. 2018, 30, 1706363.

[47]

Liu, J.; Chen, S. S.; Qian, D. P.; Gautam, B.; Yang, G. F.; Zhao, J. B.; Bergqvist, J.; Zhang, F. L.; Ma, W.; Ade, H. et al. Fast charge separation in a non-fullerene organic solar cell with a small driving force. Nat. Energy 2016, 1, 16089.

[48]

Ye, Q. R.; Ge, J. F.; Li, D. D.; Chen, Z. Y.; Shi, J. Y.; Zhang, X. L.; Zhou, E. J.; Yang, D. B.; Ge, Z. Y. Modulation of the fluorination site on side-chain thiophene improved efficiency in all-small-molecule organic solar cells. ACS Appl. Mater. Interfaces 2022, 14, 33234–33241.

[49]

Song, W.; Yu, K. B.; Ge, J. F.; Xie, L.; Zhou, R.; Peng, R. X.; Zhang, X. L.; Yang, M. J.; Wei, Z. X.; Ge, Z. Y. Entangled structure morphology by polymer guest enabling mechanically robust organic solar cells with efficiencies of over 16.5%. Matter 2022, 5, 1877–1889.

[50]

Ge, J. F.; Hong, L.; Song, W.; Xie, L.; Zhang, J. S.; Chen, Z. Y.; Yu, K. B.; Peng, R. X.; Zhang, X. L.; Ge, Z. Y. Solvent annealing enables 15.39% efficiency all-small-molecule solar cells through improved molecule interconnection and reduced non-radiative loss. Adv. Energy Mater. 2021, 11, 2100800.

[51]

Chen, H.; Zhao, T. X.; Li, L.; Tan, P.; Lai, H. J.; Zhu, Y. L.; Lai, X.; Han, L.; Zheng, N.; Guo, L. et al. 17.6%-efficient quasiplanar heterojunction organic solar cells from a chlorinated 3D network acceptor. Adv. Mater. 2021, 33, 2102778.

[52]

Chen, H. B.; Zou, Y. L.; Liang, H. Z.; He, T. F.; Xu, X. Y.; Zhang, Y. X.; Ma, Z. F.; Wang, J.; Zhang, M. T.; Li, Q. W. et al. Lowing the energy loss of organic solar cells by molecular packing engineering via multiple molecular conjugation extension. Sci. China Chem. 2022, 65, 1362–1373.

[53]

Zou, Y. L.; Chen, H. B.; Bi, X. Q.; Xu, X. Y.; Wang, H. B.; Lin, M. L.; Ma, Z. F.; Zhang, M. T.; Li, C. X.; Wan, X. J. et al. Peripheral halogenation engineering controls molecular stacking to enable highly efficient organic solar cells. Energy Environ. Sci. 2022, 15, 3519–3533.

Nano Research
Pages 11630-11637
Cite this article:
Qiu D, Zhang J, Lu K, et al. Halogenated thiophene substitutions on quinoxaline unit to achieve morphology optimization in efficient organic solar cells. Nano Research, 2023, 16(9): 11630-11637. https://doi.org/10.1007/s12274-023-5723-x
Topics:
Part of a topical collection:

1031

Views

10

Crossref

8

Web of Science

10

Scopus

0

CSCD

Altmetrics

Received: 08 February 2023
Revised: 16 March 2023
Accepted: 10 April 2023
Published: 13 May 2023
© Tsinghua University Press 2023
Return