AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Communication

Temperature-sensitive and solvent-resistance hydrogel sensor for ambulatory signal acquisition in “moist/hot environment”

Xinyu Qu1,3Hanjun Sun1Xiaolong Kan1Bing Lei2Jinjun Shao1Qian Wang1( )Wenjun Wang2Zhenhua Ni3( )Xiaochen Dong1,4( )
Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing 211816, China
School of Physical Science and Information Technology, Liaocheng University, Liaocheng 252059, China
School of Physics and Key Laboratory of MEMS of the Ministry of Education, Southeast University, Nanjing 211189, China
School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou 221116, China
Show Author Information

Graphical Abstract

The MXene composite hydrogel with excellent solvent resistance, hot/humid resistance, and mechanical properties was prepared for high-sensitivity motion and environmental sensing in “tropical climate”.

Abstract

To realize continuously and stably work in a “moist/hot environment”, flexible electronics with excellent humid resistance, anti-swelling, and detection sensitivity are demanding. Herein, a solvent-resistant and temperature-ultrasensitive hydrogel sensor was prepared by combining MXene and quaternized chitosan (QCS) with the binary polymer chain. The strong electrostatic interaction between the QCS chain and the poly(acrylic acid) (PAA) network endows the hydrogel stability against solvent erosion, high temperature, and high humidity. The strong dynamic interaction between MXene and polymer matrix significantly improves the mechanical properties and sensing (strain and temperature) sensitivity of the hydrogel. The hydrogel strain sensor exhibits a high gauge factor (5.53), temperature/humidity tolerance (equilibrium swelling ratio of 2.5% at 80 °C), and excellent cycle stability, which could achieve a remote and accurate perception of complex human motion and environment fluctuation under aquatic conditions. Moreover, the hydrogel sensor exhibits impressive thermal response sensitivity (−3.183%/°C), ultra-short response time (< 2.53 s), and a low detection limit (< 0.5 °C) in a wide temperature range, which is applied as an indicator of the body surface and ambient temperature. In short, this study broadens the application scenarios of hydrogels in persistent extreme thermal and wet environments.

Electronic Supplementary Material

Download File(s)
12274_2023_5730_MOESM1_ESM.pdf (977.6 KB)

References

[1]

Chen, J. S.; Peng, Q. Y.; Peng, X. W.; Zhang, H.; Zeng, H. B. Probing and manipulating noncovalent interactions in functional polymeric systems. Chem. Rev. 2022, 122, 14594–14678.

[2]

Kuang, X.; Arıcan, M. O.; Zhou, T.; Zhao, X. H.; Zhang, Y. S. Functional tough hydrogels: Design, processing, and biomedical applications. Acc. Chem. Res. 2023, 4, 101–114.

[3]

Li, Q. S.; Wen, C. Y.; Yang, J.; Zhou, X. C.; Zhu, Y. N.; Zheng, J.; Cheng, G.; Bai, J.; Xu, T.; Ji, J. et al. Zwitterionic biomaterials. Chem. Rev. 2022, 122, 17073–17154.

[4]

Zheng, S. J.; Li, W. Z.; Ren, Y. Y.; Liu, Z. Y.; Zou, X. Y.; Hu, Y.; Guo, J. N.; Sun, Z.; Yan, F. Moisture-wicking, breathable, and intrinsically antibacterial electronic skin based on dual-gradient poly(ionic liquid) nanofiber membranes. Adv. Mater. 2022, 34, 2106570.

[5]

Tan, P.; Wang, H. F.; Xiao, F. R.; Lu, X.; Shang, W. H.; Deng, X. B.; Song, H. F.; Xu, Z. Y.; Cao, J. F.; Gan, T. S. et al. Solution-processable, soft, self-adhesive, and conductive polymer composites for soft electronics. Nat. Commun. 2022, 13, 358.

[6]

Li, W. W.; Liu, J.; Wei, J. N.; Yang, Z. Y.; Ren, C. L.; Li, B. X. Recent progress of conductive hydrogel fibers for flexible electronics: Fabrications, applications, and perspectives. Adv. Funct. Mater. 2023, 2213485.

[7]

Yuk, H.; Wu, J. J.; Zhao, X. H. Hydrogel interfaces for merging humans and machines. Nat. Rev. Mater. 2022, 7, 935–952.

[8]

Chen, N.; Zhou, Y.; Liu, Y. P.; Mi, Y. Y.; Zhao, S. S.; Yang, W.; Che, S.; Liu, H. C.; Chen, F. J.; Xu, C. et al. Conductive photo-thermal responsive bifunctional hydrogel system with self-actuating and self-monitoring abilities. Nano Res. 2022, 15, 7703–7712.

[9]

Xiang, H.; Li, X. X.; Wu, B. H.; Sun, S. T.; Wu, P. Y. Highly damping and self-healable ionic elastomer from dynamic phase separation of sticky fluorinated polymers. Adv. Mater. 2023, 35, 2209581.

[10]

Qu, X. Y.; Zhao, Y.; Chen, Z. A.; Wang, S. Y.; Ren, Y. F.; Wang, Q.; Shao, J. J.; Wang, W. J.; Dong, X. C. Thermoresponsive lignin-reinforced poly(ionic liquid) hydrogel wireless strain sensor. Research 2021, 2021, 9845482.

[11]

Luo, Z. H.; Li, W. J.; Yan, J. P.; Sun, J. Roles of ionic liquids in adjusting nature of ionogels: A mini review. Adv. Funct. Mater. 2022, 32, 2203988.

[12]

Wu, J.; Wu, B. H.; Xiong, J. Q.; Sun, S. T.; Wu, P. Y. Entropy-mediated polymer-cluster interactions enable dramatic thermal stiffening hydrogels for mechanoadaptive smart fabrics. Angew. Chem., Int. Ed. 2022, 61, e202204960.

[13]

Qu, X. Y.; Liu, J. Y.; Wang, S. Y.; Shao, J. J.; Wang, Q.; Wang, W. J.; Gan, L.; Zhong, L. P.; Dong, X. C.; Zhao, Y. X. Photothermal regulated multi-perceptive poly(ionic liquids) hydrogel sensor for bioelectronics. Chem. Eng. J. 2023, 453, 139785.

[14]

Dai, X. H.; Long, Y.; Jiang, B.; Guo, W. B.; Sha, W.; Wang, J. W.; Cong, Z. F.; Chen, J. W.; Wang, B. J.; Hu, W. G. Ultra-antifreeze, ultra-stretchable, transparent, and conductive hydrogel for multi-functional flexible electronics as strain sensor and triboelectric nanogenerator. Nano Res. 2022, 15, 5461–5468.

[15]

Qu, X. Y.; Wang, S. Y.; Zhao, Y.; Huang, H.; Wang, Q.; Shao, J. J.; Wang, W. J.; Dong, X. C. Skin-inspired highly stretchable, tough and adhesive hydrogels for tissue-attached sensor. Chem. Eng. J. 2021, 425, 131523.

[16]

Zhang, Q.; Chen, Y. J.; Wei, P. D.; Zhong, Y.; Chen, C. J.; Cai, J. Extremely strong and tough chitosan films mediated by unique hydrated chitosan crystal structures. Mater. Today 2021, 51, 27–38.

[17]

Wei, J. J.; Zheng, Y. F.; Chen, T. A fully hydrophobic ionogel enables highly efficient wearable underwater sensors and communicators. Mater. Horiz. 2021, 8, 2761–2770.

[18]

Yu, Z. C.; Wu, P. Y. A highly transparent ionogel with strength enhancement ability for robust bonding in an aquatic environment. Mater. Horiz. 2021, 8, 2057–2064.

[19]

Yu, Z. C.; Wu, P. Y. Water-resistant ionogel electrode with tailorable mechanical properties for aquatic ambulatory physiological signal monitoring. Adv. Funct. Mater. 2021, 31, 2107226.

[20]

Han, I. K.; Song, K. I.; Jung, S. M.; Jo, Y.; Kwon, J.; Chung, T.; Yoo, S.; Jang, J.; Kim, Y. T.; Hwang, D. S. et al. Electroconductive, adhesive, non-swelling, and viscoelastic hydrogels for bioelectronics. Adv. Mater. 2023, 35, 2203431.

[21]

Yu, X. R.; Qin, W. J.; Li, X. X.; Wang, Y. L.; Gu, C. S.; Chen, J. J.; Yin, S. G. Highly sensitive, weatherability strain and temperature sensors based on AgNPs@CNT composite polyvinyl hydrogel. J. Mater. Chem. A 2022, 10, 15000–15011.

[22]

Klemm, B.; Lewis, R. W.; Piergentili, I.; Eelkema, R. Temporally programmed polymer-solvent interactions using a chemical reaction network. Nat. Commun. 2022, 13, 6242.

[23]

Wang, Z. B.; Zhou, H. H.; Liu, D.; Chen, X.; Wang, D.; Dai, S.; Chen, F.; Xu, B. B. A structural gel composite enabled robust underwater mechanosensing strategy with high sensitivity. Adv. Funct. Mater. 2022, 32, 2201396.

[24]

Xia, X. J.; Liang, Q. D.; Sun, X. G.; Yu, D. H.; Huang, X. R.; Mugo, S. M.; Chen, W.; Wang, D.; Zhang, Q. Intrinsically electron conductive, antibacterial, and anti-swelling hydrogels as implantable sensors for bioelectronics. Adv. Funct. Mater. 2022, 32, 2208024.

[25]

Ou, Y.; Zhao, T. T.; Zhang, Y.; Zhao, G. H.; Dong, L. J. Stretchable solvent-free ionic conductor with self-wrinkling microstructures for ultrasensitive strain sensor. Mater. Horiz. 2022, 9, 1679–1689.

[26]

Liu, X.; Zhang, Q.; Gao, G. H. Solvent-resistant and nonswellable hydrogel conductor toward mechanical perception in diverse liquid media. ACS Nano 2020, 14, 13709–13717.

[27]

Miao, Z. Y.; Song, Y.; Dong, Y. J.; Ge, D.; Shui, J. X.; He, X.; Yu, H. Y. Intrinsic conductive cellulose nanofiber induce room-temperature reversible and robust polyvinyl alcohol hydrogel for multifunctional self-healable biosensors. Nano Res. 2023, 16, 3156–3167.

[28]

Ge, G.; Lu, Y.; Qu, X. Y.; Zhao, W.; Ren, Y. F.; Wang, W. J.; Wang, Q.; Huang, W.; Dong, X. C. Muscle-inspired self-healing hydrogels for strain and temperature sensor. ACS Nano 2020, 14, 218–228.

[29]

Zheng, H. Y.; Chen, M.; Sun, Y. S.; Zuo, B. Q. Self-Healing, Wet-Adhesion silk fibroin conductive hydrogel as a wearable strain sensor for underwater applications. Chem. Eng. J. 2022, 446, 136931.

[30]

Ma, X. T.; Zhou, X.; Ding, J. J.; Huang, B.; Wang, P. Y.; Zhao, Y.; Mu, Q. Y.; Zhang, S. H.; Ren, C. G.; Xu, W. L. Hydrogels for underwater adhesion: Adhesion mechanism, design strategies and applications. J. Mater. Chem. A 2022, 10, 11823–11853.

[31]

Xue, Y.; Zhang, J.; Chen, X. M.; Zhang, J. J.; Chen, G. D.; Zhang, K.; Lin, J. S.; Guo, C. F.; Liu, J. Trigger-detachable hydrogel adhesives for bioelectronic interfaces. Adv. Funct. Mater. 2021, 31, 2106446.

[32]

Sun, D.; Feng, Y. F.; Sun, S. C.; Yu, J.; Jia, S. Y.; Dang, C.; Hao, X.; Yang, J.; Ren, W. F.; Sun, R. C. et al. Transparent, self-adhesive, conductive organohydrogels with fast gelation from lignin-based self-catalytic system for extreme environment-resistant triboelectric nanogenerators. Adv. Funct. Mater. 2022, 32, 2201335.

[33]

Zhao, H. N.; Hao, S. W.; Fu, Q. J.; Zhang, X. R.; Meng, L.; Xu, F.; Yang, J. Ultrafast fabrication of lignin-encapsulated silica nanoparticles reinforced conductive hydrogels with high elasticity and self-adhesion for strain sensors. Chem. Mater. 2022, 34, 5258–5272.

[34]

Zhang, S. M.; Wang, X. Inorganic subnanometer nanowire-based organogels: Trends, challenges, and opportunities. ACS Nano 2023, 17, 20–26.

[35]

Pi, M. H.; Qin, S. H.; Wen, S. H.; Wang, Z. S.; Wang, X. Y.; Li, M.; Lu, H. L.; Meng, Q. D.; Cui, W.; Ran, R. Rapid gelation of tough and anti-swelling hydrogels under mild conditions for underwater communication. Adv. Funct. Mater. 2023, 33, 2210188.

[36]

Cao, Y.; Tan, Y. J.; Li, S.; Lee, W. W.; Guo, H. C.; Cai, Y. Q.; Wang, C.; Tee, B. C. K. Self-healing electronic skins for aquatic environments. Nat. Electron. 2019, 2, 75–82.

[37]

Dang, C.; Wang, M.; Yu, J.; Chen, Y.; Zhou, S. H.; Feng, X.; Liu, D. T.; Qi, H. S. Transparent, highly stretchable, rehealable, sensing, and fully recyclable ionic conductors fabricated by one-step polymerization based on a small biological molecule. Adv. Funct. Mater. 2019, 29, 1902467.

[38]

Guan, L.; Liu, H.; Ren, X. J.; Wang, T. J.; Zhu, W. H.; Zhao, Y.; Feng, Y. B.; Shen, C.; Zvyagin, A. V.; Fang, L. N. et al. Balloon inspired conductive hydrogel strain sensor for reducing radiation damage in peritumoral organs during brachytherapy. Adv. Funct. Mater. 2022, 32, 2112281.

[39]

Yu, H. P.; Zhu, Y. J. Bioinspired flexible, high-strength, and versatile hydrogel with the fiberboard-and-mortar hierarchically ordered structure. Nano Res. 2021, 14, 3643–3652.

[40]

Bian, Q. Y.; Fu, L. L.; Li, H. B. Engineering shape memory and morphing protein hydrogels based on protein unfolding and folding. Nat. Commun. 2022, 13, 137.

[41]

Lu, Y.; Qu, X.; Wang, S.; Zhao, Y.; Ren, Y.; Zhao, W.; Wang, Q.; Sun, C.; Wang, W.; Dong, X. Ultradurable, freeze-resistant, and healable MXene-based ionic gels for multi-functional electronic skin. Nano Res. 2022, 15, 4421–4430.

Nano Research
Pages 10348-10357
Cite this article:
Qu X, Sun H, Kan X, et al. Temperature-sensitive and solvent-resistance hydrogel sensor for ambulatory signal acquisition in “moist/hot environment”. Nano Research, 2023, 16(7): 10348-10357. https://doi.org/10.1007/s12274-023-5730-y
Topics:

796

Views

12

Crossref

12

Web of Science

11

Scopus

0

CSCD

Altmetrics

Received: 05 March 2023
Revised: 03 April 2023
Accepted: 11 April 2023
Published: 06 May 2023
© Tsinghua University Press 2023
Return