Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Computer vision techniques are real-time, immersive, and perceptual human-computer interaction technology. Excellent display effect, dynamic surface flexibility, and safe bio-adhesion are essential for various human–computer interaction applications, such as metaverse interfaces, skin-like sensors, and optoelectronic medical devices. However, realizing the flexible matching of inorganic optoelectronic devices and organisms remains a grand challenge for current display technologies. Here, we proposed a novel strategy by combining the optoelectronic advantages of inorganic micro light emitting diode (micro-LED) display and the extraordinary mechanical/biological compatibility of organic materials to overcome this challenge. A highly elastic (greater than 2000% strain), highly transparent (94% visible light transmittance), biocompatible conductive hydrogel composite electrode layer was fabricated. For the first time, we realized the on-chip electrical interconnection of 4900 LED units to form a blue-green light display patch with high resolution (264 PPI), low power consumption (4.4 mW) and adaptive surface attachment. This work demonstrates an integrated scheme and potential applications of flexible high-resolution microdisplays, such as wearable full-color micro-LED smart curved display devices and conformable biomedical monitoring systems.
Jang, B.; Won, S.; Kim, J.; Kim, J.; Oh, M.; Lee, H. J.; Kim, J. H. Auxetic meta-display: Stretchable display without image distortion. Adv. Funct. Mater. 2022, 32, 2113299.
Zhang, Z. T.; Wang, W. C.; Jiang, Y. W.; Wang, Y. X.; Wu, Y. L.; Lai, J. C.; Niu, S. M.; Xu, C. Y.; Shih, C. C.; Wang, C. et al. High-brightness all-polymer stretchable LED with charge-trapping dilution. Nature 2022, 603, 624–630.
Lee, Y.; Chung, J. W.; Lee, G. H.; Kang, H.; Kim, J. Y.; Bae, C.; Yoo, H.; Jeong, S.; Cho, H.; Kang, S. G. et al. Standalone real-time health monitoring patch based on a stretchable organic optoelectronic system. Sci. Adv. 2021, 7, eabg9180.
Kim, D. H.; Lu, N. S.; Ma, R.; Kim, Y. S.; Kim, R. H.; Wang, S. D.; Wu, J.; Won, S. M.; Tao, H.; Islam, A. et al. Epidermal electronics. Science 2011, 333, 838–843.
Tee, B. C. K.; Wang, C.; Allen, R.; Bao, Z. N. An electrically and mechanically self-healing composite with pressure- and flexion-sensitive properties for electronic skin applications. Nat. Nanotechnol. 2012, 7, 825–832.
Park, J.; Kim, J.; Kim, S. Y.; Cheong, W. H.; Jang, J.; Park, Y. G.; Na, K.; Kim, Y. T.; Heo, J. H.; Lee, C. Y. et al. Soft, smart contact lenses with integrations of wireless circuits, glucose sensors, and displays. Sci. Adv. 2018, 4, eaap9841.
Chortos, A.; Liu, J.; Bao, Z. A. Pursuing prosthetic electronic skin. Nat. Mater. 2016, 15, 937–950.
Wang, Z. W.; Cong, Y.; Fu, J. Stretchable and tough conductive hydrogels for flexible pressure and strain sensors. J. Mater. Chem. B 2020, 8, 3437–3459.
Wagner, S.; Bauer, S. Materials for stretchable electronics. MRS Bull. 2012, 37, 207–213.
Yao, S. S.; Zhu, Y. Nanomaterial-enabled stretchable conductors: Strategies, materials and devices. Adv. Mater. 2015, 27, 1480–1511.
Yan, C. Y.; Lee, P. S. Stretchable energy storage and conversion devices. Small 2014, 10, 3443–3460.
Park, S. I.; Xiong, Y. J.; Kim, R. H.; Elvikis, P.; Meitl, M.; Kim, D. H.; Wu, J.; Yoon, J.; Yu, C. J.; Liu, Z. J. et al. Printed assemblies of inorganic light-emitting diodes for deformable and semitransparent displays. Science 2009, 325, 977–981.
Kim, R. H.; Bae, M. H.; Kim, D. G.; Cheng, H. Y.; Kim, B. H.; Kim, D. H.; Li, M.; Wu, J.; Du, F.; Kim, H. S. et al. Stretchable, transparent graphene interconnects for arrays of microscale inorganic light emitting diodes on rubber substrates. Nano Lett. 2011, 11, 3881–3886.
Kim, K.; Vöröslakos, M.; Seymour, J. P.; Wise, K. D.; Buzsáki, G.; Yoon, E. Artifact-free and high-temporal-resolution in vivo opto-electrophysiology with microLED optoelectrodes. Nat. Commun. 2020, 11, 2063.
McCall, J. G.; Kim, T. I.; Shin, G.; Huang, X.; Jung, Y. H.; Al-Hasani, R.; Omenetto, F. G.; Bruchas, M. R.; Rogers, J. A. Fabrication and application of flexible, multimodal light-emitting devices for wireless optogenetics. Nat. Protocols 2013, 8, 2413–2428.
Lee, H. E.; Choi, J. H.; Lee, S. H.; Jeong, M.; Shin, J. H.; Joe, D. J.; Kim, D. H.; Kim, C. W.; Park, J. H.; Lee, J. H. et al. Monolithic flexible vertical GaN light-emitting diodes for a transparent wireless brain optical stimulator. Adv. Mater. 2018, 30, 1800649.
Guo, Z. V.; Li, N.; Huber, D.; Ophir, E.; Gutnisky, D.; Ting, J. T.; Feng, G. P.; Svoboda, K. Flow of cortical activity underlying a tactile decision in mice. Neuron 2014, 81, 179–194.
Packer, A. M.; Russell, L. E.; Dalgleish, H. W. P.; Hausser, M. Simultaneous all-optical manipulation and recording of neural circuit activity with cellular resolution in vivo. Nat. Methods 2015, 12, 140–146.
Zeng, W.; Shu, L.; Li, Q.; Chen, S.; Wang, F.; Tao, X. M. Fiber-based wearable electronics: A review of materials, fabrication, devices, and applications. Adv. Mater. 2014, 26, 5310–5336.
Kim, S. H.; Jung, S.; Yoon, I. S.; Lee, C.; Oh, Y.; Hong, J. M. Ultrastretchable conductor fabricated on skin-like hydrogel-elastomer hybrid substrates for skin electronics. Adv. Mater. 2018, 30, 1800109.
Liu, Q. H.; Nian, G. D.; Yang, C. H.; Qu, S. X.; Suo, Z. G. Bonding dissimilar polymer networks in various manufacturing processes. Nat. Commun. 2018, 9, 846.
Gan, D. L.; Xing, W. S.; Jiang, L. L.; Fang, J.; Zhao, C. C.; Ren, F. Z.; Fang, L. M.; Wang, K. F.; Lu, X. Plant-inspired adhesive and tough hydrogel based on Ag-Lignin nanoparticles-triggered dynamic redox catechol chemistry. Nat. Commun. 2019, 10, 1487.
Yuk, H.; Zhang, T.; Lin, S. T.; Parada, G. A.; Zhao, X. H. Tough bonding of hydrogels to diverse non-porous surfaces. Nat. Mater. 2016, 15, 190–196.
Gan, D. L.; Huang, Z. Q.; Wang, X.; Jiang, L. L.; Wang, C. M.; Zhu, M. Y.; Ren, F. Z.; Fang, L. M.; Wang, K. F.; Xie, C. M. et al. Graphene oxide-templated conductive and redox-active nanosheets incorporated hydrogels for adhesive bioelectronics. Adv. Funct. Mater. 2020, 30, 1907678.
Keplinger, C.; Sun, J. Y.; Foo, C. C.; Rothemund, P.; Whitesides, G. M.; Suo, Z. G. Stretchable, transparent, ionic conductors. Science 2013, 341, 984–987.
Shi, L.; Zhu, T. X.; Gao, G. X.; Zhang, X. Y.; Wei, W.; Liu, W. F.; Ding, S. J. Highly stretchable and transparent ionic conducting elastomers. Nat. Commun. 2018, 9, 2630.
Sha, W.; Hua, Q. L.; Wang, J. W.; Cong, Z. F.; Cui, X.; Ji, K. Y.; Dai, X. H.; Wang, B. J.; Guo, W. B.; Hu, W. G. Enhanced photoluminescence of flexible InGaN/GaN multiple quantum wells on fabric by piezo-phototronic effect. ACS Appl. Mater. Interfaces 2022, 14, 3000–3007.
Chen, J. W.; Wang, J. W.; Ji, K. Y.; Jiang, B.; Cui, X.; Sha, W.; Wang, B. J.; Dai, X. H.; Hua, Q. L.; Wan, L. Y. et al. Flexible, stretchable, and transparent InGaN/GaN multiple quantum wells/polyacrylamide hydrogel-based light emitting diodes. Nano Res. 2022, 15, 5492–5499.
Lin, S. T.; Yuk, H.; Zhang, T.; Parada, G. A.; Koo, H.; Yu, C. J.; Zhao, X. H. Stretchable hydrogel electronics and devices. Adv. Mater. 2016, 28, 4497–4505.
Liu, K. L.; Zhang, Z. X.; Li, J. Supramolecular hydrogels based on cyclodextrin-polymer polypseudorotaxanes: Materials design and hydrogel properties. Soft Matter 2011, 7, 11290–11297.
Katsuno, C.; Konda, A.; Urayama, K.; Takigawa, T.; Kidowaki, M.; Ito, K. Pressure-responsive polymer membranes of slide-ring gels with movable cross-links. Adv. Mater. 2013, 25, 4636–4640.
Tan, S.; Ladewig, K.; Fu, Q.; Blencowe, A.; Qiao, G. G. Cyclodextrin-based supramolecular assemblies and hydrogels: Recent advances and future perspectives. Macromol. Rapid Commun. 2014, 35, 1166–1184.
Ito, K. Slide-ring materials using cyclodextrin. Chem. Pharm. Bull. 2017, 65, 326–329.
Mähler, J.; Persson, I. A study of the hydration of the alkali metal ions in aqueous solution. Inorg. Chem. 2012, 51, 425–438.