AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Engineering the inter-island plasmonic coupling in homometallic Au–Aun core–satellite structures

Xiaoying Wu1,§Xiaoli Tian1,§Zihe Jiang3Yun Wang1Tingting Jiang1Yuhua Feng1( )Zhenglong Zhang3( )Hongyu Chen2( )
Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
School of Science, Westlake University, Hangzhou 310024, China
School of Physics and Information Technology, Shaanxi Normal University, Xi’an 710062, China

§ Xiaoying Wu and Xiaoli Tian contributed equally to this work.

Show Author Information

Graphical Abstract

Through engineering the number, the size, and the inter-island distances of the Au satellites, the intraparticle plasmonic couplings of the Au−Aun core−satellite structures were well-controlled. As a result, the absorptions of the hybrid structures were readily tuned within the visible-near-infrared (NIR) spectral range, endowing their great potentials in plasmonic-related applications.

Abstract

We show that through strong ligand mediated interfacial energy control between Au seeds and the deposited Au, the non-wetting growth of Au on Au seeds led to the formation homometallic core–satellite nanostructures. To modulate the intraparticle plasmonic coupling between the core and the satellites, the number and size of the Au satellites, and their inter-island distances were continuously tuned by varying the growth kinetics. As a result of the precise structural control, the plasmonic absorptions of the core–satellite nanostructures were tuned from visible to near-infrared (NIR) spectral range, and the extent of spectral modulation (500–1300 nm) is among the best of the literature methods. This synthetic advance enriches the toolbox for nanosynthesis and points to a new direction in the exploration of sophisticated functional designs.

Electronic Supplementary Material

Download File(s)
12274_2023_5732_MOESM1_ESM.pdf (4.6 MB)

References

[1]

Gharatape, A.; Davaran, S.; Salehi, R.; Hamishehkar, H. Engineered gold nanoparticles for photothermal cancer therapy and bacteria killing. RSC Adv. 2016, 6, 111482–111516.

[2]

Liu, Y. J.; Bhattarai, P.; Dai, Z. F.; Chen, X. Y. Photothermal therapy and photoacoustic imaging via nanotheranostics in fighting cancer. Chem. Soc. Rev. 2019, 48, 2053–2108.

[3]

Doughty, A. C. V.; Hoover, A. R.; Layton, E.; Murray, C. K.; Howard, E. W.; Chen, W. R. Nanomaterial applications in photothermal therapy for cancer. Materials 2019, 12, 779.

[4]
Feng, Y. H.; Chen, H. Y. Design and synthesis of plasmonic nanoparticles. In World Scientific Reference on Plasmonic Nanomaterials. Nam, J. M., Ed.; World Scientific, 2022; pp 31–84.
[5]

Hong, X.; Tan, C. L.; Chen, J. Z.; Xu, Z. C.; Zhang, H. Synthesis, properties and applications of one- and two-dimensional gold nanostructures. Nano Res. 2015, 8, 40–55.

[6]

He, S. Q.; Song, J.; Qu, J. L.; Cheng, Z. Crucial breakthrough of second near-infrared biological window fluorophores: Design and synthesis toward multimodal imaging and theranostics. Chem. Soc. Rev. 2018, 47, 4258–4278.

[7]

Li, S. N.; Zhang, L. Y.; Chen, X. J.; Wang, T. T.; Zhao, Y.; Li, L.; Wang, C. G. Selective growth synthesis of ternary Janus nanoparticles for imaging-guided synergistic chemo- and photothermal therapy in the second NIR window. ACS Appl. Mater. Interfaces 2018, 10, 24137–24148.

[8]

Bardhan, R.; Mukherjee, S.; Mirin, N. A.; Levit, S. D.; Nordlander, P.; Halas, N. J. Nanosphere-in-a-nanoshell: A simple nanomatryushka. J. Phys. Chem. C 2010, 114, 7378–7383.

[9]

Gao, Y. P.; Li, Y. S.; Wang, Y.; Chen, Y.; Gu, J. L.; Zhao, W. R.; Ding, J.; Shi, J. L. Controlled synthesis of multilayered gold nanoshells for enhanced photothermal therapy and SERS detection. Small 2015, 11, 77–83.

[10]

Jia, J.; Liu, G. Y.; Xu, W. J.; Tian, X. L.; Li, S. B.; Han, F.; Feng, Y. H.; Dong, X. C.; Chen, H. Y. Fine-tuning the homometallic interface of Au-on-Au nanorods and their photothermal therapy in the NIR-II window. Angew. Chem., Int. Ed. 2020, 59, 14443–14448.

[11]

Huang, J. F.; Liu, C. X.; Zhu, Y. H.; Masala, S.; Alarousu, E.; Han, Y.; Fratalocchi, A. Harnessing structural darkness in the visible and infrared wavelengths for a new source of light. Nat. Nanotechnol. 2016, 11, 60–66.

[12]

Ruan, Q. F.; Shao, L.; Shu, Y. W.; Wang, J. F.; Wu, H. K. Growth of monodisperse gold nanospheres with diameters from 20 nm to 220 nm and their core/satellite nanostructures. Adv. Opt. Mater. 2014, 2, 65–73.

[13]

Li, Q.; Zhuo, X. L.; Li, S.; Ruan, Q. F.; Xu, Q. H.; Wang, J. F. Production of monodisperse gold nanobipyramids with number percentages approaching 100% and evaluation of their plasmonic properties. Adv. Opt. Mater. 2015, 3, 801–812.

[14]

Tian, X. L.; Zong, J. P.; Zhou, Y. S.; Chen, D. P.; Jia, J.; Li, S. B.; Dong, X. C.; Feng, Y. H.; Chen, H. Y. Designing caps for colloidal Au nanoparticles. Chem. Sci. 2021, 12, 3644–3650.

[15]

Wang, Y. W.; He, J. T.; Yu, S. Z.; Chen, H. Y. Effect of thiolated ligands in Au nanowire synthesis. Small 2017, 13, 1702121.

[16]

Peng, Z. M.; Yang, H. Designer platinum nanoparticles: Control of shape, composition in alloy, nanostructure and electrocatalytic property. Nano Today 2009, 4, 143–164.

[17]

Feng, Y. H.; Wang, Y. W.; Song, X. H.; Xing, S. X.; Chen, H. Y. Depletion sphere: Explaining the number of Ag islands on Au nanoparticles. Chem. Sci. 2017, 8, 430–436.

[18]

Cobley, C. M.; Skrabalak, S. E.; Campbell, D. J.; Xia, Y. N. Shape-controlled synthesis of silver nanoparticles for plasmonic and sensing applications. Plasmonics 2009, 4, 171–179.

[19]

Amirjani, A.; Rahbarimehr, E. Recent advances in functionalization of plasmonic nanostructures for optical sensing. Microchim. Acta 2021, 188, 57.

[20]

Huang, X. H.; El-Sayed, M. A. Gold nanoparticles: Optical properties and implementations in cancer diagnosis and photothermal therapy. J. Adv. Res. 2010, 1, 13–28.

[21]

Ye, X. C.; Zheng, C.; Chen, J.; Gao, Y. Z.; Murray, C. B. Using binary surfactant mixtures to simultaneously improve the dimensional tunability and monodispersity in the seeded growth of gold nanorods. Nano Lett. 2013, 13, 765–771.

[22]

Halas, N. J.; Lal, S.; Chang, W. S.; Link, S.; Nordlander, P. Plasmons in strongly coupled metallic nanostructures. Chem. Rev. 2011, 111, 3913–3961.

[23]

Luk’yanchuk, B.; Zheludev, N. I.; Maier, S. A.; Halas, N. J.; Nordlander, P.; Giessen, H.; Chong, C. T. The Fano resonance in plasmonic nanostructures and metamaterials. Nat. Mater. 2010, 9, 707–715.

[24]

Lovera, A.; Gallinet, B.; Nordlander, P.; Martin, O. J. F. Mechanisms of Fano resonances in coupled plasmonic systems. ACS Nano 2013, 7, 4527–4536.

[25]

Rahmani, M.; Luk’yanchuk, B.; Hong, M. H. Fano resonance in novel plasmonic nanostructures. Laser Photonics Rev. 2013, 7, 329–349.

[26]

Prodan, E.; Radloff, C.; Halas, N. J.; Nordlander, P. A hybridization model for the plasmon response of complex nanostructures. Science 2003, 302, 419–422.

[27]

Xu, K. Y.; Li, J.; Han, Q. Y.; Zhang, D. D.; Zhang, L. B.; Zhang, Z.; Lu, X. Q. Ultrasensitive detection of vitamin E by signal conversion combined with core–satellite structure-based plasmon coupling effect. Analyst 2022, 147, 398–403.

[28]

Ding, S. Y.; You, E. M.; Tian, Z. Q.; Moskovits, M. Electromagnetic theories of surface-enhanced Raman spectroscopy. Chem. Soc. Rev. 2017, 46, 4042–4076.

[29]

Langer, J.; Jimenez de Aberasturi, D.; Aizpurua, J.; Alvarez-Puebla, R. A.; Auguié, B.; Baumberg, J. J.; Bazan, G. C.; Bell, S. E. J.; Boisen, A.; Brolo, A. G. et al. Present and future of surface-enhanced Raman scattering. ACS Nano 2020, 14, 28–117.

[30]

Jain, P. K.; Huang, W. Y.; El-Sayed, M. A. On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: A plasmon ruler equation. Nano Lett. 2007, 7, 2080–2088.

[31]

Sun, J. W.; Hu, H. T.; Zheng, D. X.; Zhang, D.; Deng, Q.; Zhang, S. P.; Xu, H. X. Light-emitting plexciton: Exploiting plasmon-exciton interaction in the intermediate coupling regime. ACS Nano 2018, 12, 10393–10402.

[32]

Pérez-González, O.; Zabala, N.; Borisov, A. G.; Halas, N. J.; Nordlander, P.; Aizpurua, J. Optical spectroscopy of conductive junctions in plasmonic cavities. Nano Lett. 2010, 10, 3090–3095.

[33]

Pérez-González, O.; Zabala, N.; Aizpurua, J. Optical characterization of charge transfer and bonding dimer plasmons in linked interparticle gaps. New J. Phys. 2011, 13, 083013.

[34]

Gerislioglu, B.; Ahmadivand, A. Functional charge transfer plasmon metadevices. Research 2020, 2020, 9468692.

[35]

Banik, M.; El-Khoury, P. Z.; Nag, A.; Rodriguez-Perez, A.; Guarrottxena, N.; Bazan, G. C.; Apkarian, V. A. Surface-enhanced Raman trajectories on a nano-dumbbell: Transition from field to charge transfer plasmons as the spheres fuse. ACS Nano 2012, 6, 10343–10354.

Nano Research
Pages 10690-10697
Cite this article:
Wu X, Tian X, Jiang Z, et al. Engineering the inter-island plasmonic coupling in homometallic Au–Aun core–satellite structures. Nano Research, 2023, 16(7): 10690-10697. https://doi.org/10.1007/s12274-023-5732-9
Topics:

999

Views

6

Crossref

6

Web of Science

6

Scopus

0

CSCD

Altmetrics

Received: 10 February 2023
Revised: 03 April 2023
Accepted: 11 April 2023
Published: 05 June 2023
© Tsinghua University Press 2023
Return