AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Water promoted structural evolution of Ag nanocatalysts supported on alumina

Conghui Liu1,2,§Rongtan Li2,§Fei Wang3Kun Li2Yamei Fan2Rentao Mu2Qiang Fu2( )
Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, China
State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China

§ Conghui Liu and Rongtan Li contributed equally to this work.

Show Author Information

Graphical Abstract

The presence of H2O in an oxidative atmosphere can accelerate dispersion of supported Ag nanoparticles to nanoclusters at high temperature while enhance aggregation of Ag nanoclusters into nanoparticles at room temperature.

Abstract

Water is often involved in many catalytic processes, which can strongly affect structural evolution of catalysts during pretreatments and catalytic reactions. In this work, we demonstrate a promotional effect of H2O on both oxidative dispersion and spontaneous aggregation of Ag nanocatalysts supported on alumina. Ag nanoparticles supported on γ-Al2O3 and Ag nanowires on Al2O3(0001) can be dispersed into nanoclusters via annealing in O2 above 300 °C, which is accelerated by introduction of H2O into the oxidative atmosphere. Furthermore, the formed highly dispersed Ag nanoclusters are subject to spontaneous aggregation in humid atmosphere at room temperature. Ex situ and in situ characterizations in both powder and model catalysts suggest that formation of abundant surface hydroxyls and/or water adlayer on the Al2O3 surface in the H2O-containing atmosphere facilitates the surface migration of Ag species, thus promoting both dispersion and aggregation processes. The aggregation of the supported Ag nanostructures induced by the humid oxidative atmosphere enhances CO oxidation but inhibits selective catalytic reduction of NO with C3H6. This work illustrates the critical role of H2O in structure and catalytic performance of metal nanocatalysts, which can be widely present in heterogeneous catalysis.

Electronic Supplementary Material

Download File(s)
12274_2023_5735_MOESM1_ESM.pdf (4.9 MB)

References

[1]

Strizhak, P. E. Nanosize effects in heterogeneous catalysis. Theor. Exp. Chem. 2013, 49, 2–21.

[2]

Bond, G. C. The origins of particle size effects in heterogeneous catalysis. Surf. Sci. 1985, 156, 966–981.

[3]

Cao, S. W.; Tao, F.; Tang, Y.; Li, Y. T.; Yu, J. G. Size- and shape-dependent catalytic performances of oxidation and reduction reactions on nanocatalysts. Chem. Soc. Rev. 2016, 45, 4747–4765.

[4]
Xu, L. L.; Chen, J. X.; Ma, Q.; Chao, D. Y.; Zhu, X. Y.; Liu, L.; Wang, J.; Fang, Y. X.; Dong, S. J. Critical evaluation of the glucose oxidase-like activity of gold nanoparticles stabilized by different polymers. Nano Res. 2023, 16, 4758–4766.
[5]

Khodakov, A. Y. Fischer-tropsch synthesis: Relations between structure of cobalt catalysts and their catalytic performance. Catal. Today 2009, 144, 251–257.

[6]

Da Silva, A. L. M.; Den Breejen, J. P.; Mattos, L. V.; Bitter, J. H.; De Jong, K. P.; Noronha, F. B. Cobalt particle size effects on catalytic performance for ethanol steam reforming-smaller is better. J. Catal. 2014, 318, 67–74.

[7]

Wei, J. M.; Iglesia, E. Mechanism and site requirements for activation and chemical conversion of methane on supported Pt clusters and turnover rate comparisons among noble metals. J. Phys. Chem. B 2004, 108, 4094–4103.

[8]

Xiang, G. L.; Wang, Y. G. Exploring electronic-level principles how size reduction enhances nanomaterial surface reactivity through experimental probing and mathematical modeling. Nano Res. 2022, 15, 3812–3817.

[9]

Che, M.; Bennett, C. O. The influence of particle size on the catalytic properties of supported metals. Adv. Catal. 1989, 36, 55–172.

[10]

Wang, F.; Li, Z.; Wang, H. H.; Chen, M.; Zhang, C. B.; Ning, P.; He, H. Nano-sized Ag rather than single-atom Ag determines CO oxidation activity and stability. Nano Res. 2022, 15, 452–456.

[11]

Liu, Y. M.; Tsunoyama, H.; Akita, T.; Xie, S. H.; Tsukuda, T. Aerobic oxidation of cyclohexane catalyzed by size-controlled Au clusters on hydroxyapatite: Size effect in the sub-2 nm regime. ACS Catal. 2011, 1, 2–6.

[12]

Akhade, S. A.; Winkelman, A.; Dagle, V. L.; Kovarik, L.; Yuk, S. F.; Lee, M. S.; Zhang, J.; Padmaperuma, A. B.; Dagle, R. A.; Glezakou, V. A. et al. Influence of Ag metal dispersion on the thermal conversion of ethanol to butadiene over Ag-ZrO2/SiO2 catalysts. J. Catal. 2020, 386, 30–38.

[13]

Somorjai, G. A.; Li, Y. M. Selective nanocatalysis of organic transformation by metals: Concepts, model systems, and instruments. Top. Catal. 2010, 53, 832–847.

[14]

Argyle, M. D.; Bartholomew, C. H. Heterogeneous catalyst deactivation and regeneration: A review. Catalysts 2015, 5, 145–269.

[15]

Plessow, P. N.; Abild-Pedersen, F. Sintering of Pt nanoparticles via volatile PtO2: Simulation and comparison with experiments. ACS Catal. 2016, 6, 7098–7108.

[16]

Yan, D. X.; Chen, J.; Jia, H. P. Temperature-induced structure reconstruction to prepare a thermally stable single-atom platinum catalyst. Angew. Chem., Int. Ed. 2020, 59, 13562–13567.

[17]

Hansen, T. W.; Delariva, A. T.; Challa, S. R.; Datye, A. K. Sintering of catalytic nanoparticles: Particle migration or Ostwald ripening. . Acc. Chem. Res. 2013, 46, 1720–1730.

[18]

Tanabe, T.; Nagai, Y.; Dohmae, K.; Sobukawa, H.; Shinjoh, H. Sintering and redispersion behavior of Pt on Pt/MgO. J. Catal. 2008, 257, 117–124.

[19]

Goodman, E. D.; Johnston-Peck, A. C.; Dietze, E. M.; Wrasman, C. J.; Hoffman, A. S.; Abild-Pedersen, F.; Bare, S. R.; Plessow, P. N.; Cargnello, M. Catalyst deactivation via decomposition into single atoms and the role of metal loading. Nat. Catal. 2019, 2, 748–755.

[20]

Yang, J.; Qi, H. F.; Li, A. Q.; Liu, X. Y.; Yang, X. F.; Zhang, S. X.; Zhao, Q.; Jiang, Q. K.; Su, Y.; Zhang, L. L. et al. Potential-driven restructuring of Cu single atoms to nanoparticles for boosting the electrochemical reduction of nitrate to ammonia. J. Am. Chem. Soc. 2022, 144, 12062–12071.

[21]

Peláez, R. J.; Castelo, A.; Afonso, C. N.; Borrás, A.; Espinós, J. P.; Riedel, S.; Leiderer, P.; Boneberg, J. Enhanced reactivity and related optical changes of Ag nanoparticles on amorphous Al2O3 supports. Nanotechnology 2013, 24, 365702.

[22]

Zhu, J.; Wang, P.; Zhang, X. B.; Zhang, G. H.; Li, R. T.; Li, W. H.; Senftle, T. P.; Liu, W.; Wang, J. Y.; Wang, Y. L. et al. Dynamic structural evolution of iron catalysts involving competitive oxidation and carburization during CO2 hydrogenation. Sci. Adv. 2022, 8, eabm3629.

[23]

Huang, W. X.; Johnston-Peck, A. C.; Wolter, T.; Yang, W. D.; Xu, L.; Oh, J.; Reeves, B. A.; Zhou, C. S.; Holtz, M. E.; Herzing, A. A. et al. Steam-created grain boundaries for methane C-H activation in palladium catalysts. Science 2021, 373, 1518–1523.

[24]

Goguet, A.; Burch, R.; Chen, Y.; Hardacre, C.; Hu, P.; Joyner, R. W.; Meunier, F. C.; Mun, B. S.; Thompsett, D.; Tibiletti, D. Deactivation mechanism of a Au/CeZrO4 catalyst during a low-temperature water gas shift reaction. J. Phys. Chem. C 2007, 111, 16927–16933.

[25]

Yang, J. J.; Huang, Y. K.; Qi, H. F.; Zeng, C. B.; Jiang, Q. K.; Cui, Y. T.; Su, Y.; Du, X. R.; Pan, X. L.; Liu, X. Y. et al. Modulating the strong metal-support interaction of single-atom catalysts via vicinal structure decoration. Nat. Commun. 2022, 13, 4244.

[26]

Liu, A. N.; Liu, L. C.; Cao, Y.; Wang, J. M.; Si, R.; Gao, F.; Dong, L. Controlling dynamic structural transformation of atomically dispersed CuOx species and influence on their catalytic performances. ACS Catal. 2019, 9, 9840–9851.

[27]

Song, J.; Wang, Y. L.; Walter, E. D.; Washton, N. M.; Mei, D. H.; Kovarik, L.; Engelhard, M. H.; Prodinger, S.; Wang, Y.; Peden, C. H. F. et al. Toward rational design of Cu/SSZ-13 selective catalytic reduction catalysts: Implications from atomic-level understanding of hydrothermal stability. ACS Catal. 2017, 7, 8214–8227.

[28]

Glover, R. D.; Miller, J. M.; Hutchison, J. E. Generation of metal nanoparticles from silver and copper objects: Nanoparticle dynamics on surfaces and potential sources of nanoparticles in the environment. ACS Nano 2011, 5, 8950–8957.

[29]

Wang, H. K.; Tang, H. H.; Liang, J. J.; Chen, Y. S. Dynamic agitation-induced centrifugal purification of nanowires enabling transparent electrodes with 99.2% transmittance. Adv. Funct. Mater. 2018, 28, 1804479.

[30]

Sayah, E.; Brouri, D.; Wu, Y. H.; Musi, A.; Da Costa, P.; Massiani, P. A TEM and UV-visible study of silver reduction by ethanol in Ag-alumina catalysts. Appl. Catal. A: Gen. 2011, 406, 94–101.

[31]
Li, R. T.; Xu, X. Y.; Zhu, B. E.; Li, X. Y.; Ning, Y. X.; Mu, R. T.; Du, P. F.; Li, M. W.; Wang, H. K.; Liang, J. J. et al. In situ identification of the metallic state of Ag nanoclusters in oxidative dispersion. Nat. Commun. 2021, 12, 1406.
[32]

Chaieb, T.; Brouri, D.; Casale, S.; Krafft, J. M.; Da Silva, T.; Thomas, C.; Delannoy, L.; Louis, C. On the origin of the changes in color of Ag/Al2O3 catalysts during storage. Res. Chem. Intermed. 2019, 45, 5877–5905.

[33]

Wang, F.; Ma, J. Z.; Xin, S. H.; Wang, Q.; Xu, J.; Zhang, C. B.; He, H.; Zeng, X. C. Resolving the puzzle of single-atom silver dispersion on nanosized γ-Al2O3 surface for high catalytic performance. Nat. Commun. 2020, 11, 529.

[34]

Deng, H.; Yu, Y. B.; Liu, F. D.; Ma, J. Z.; Zhang, Y.; He, H. Nature of Ag species on Ag/γ-Al2O3: A combined experimental and theoretical study. ACS Catal. 2014, 4, 2776–2784.

[35]

Lamoth, M.; Plodinec, M.; Scharfenberg, L.; Wrabetz, S.; Girgsdies, F.; Jones, T.; Rosowski, F.; Horn, R.; Schlögl, R.; Frei, E. Supported Ag nanoparticles and clusters for CO oxidation: Size effects and influence of the silver-oxygen interactions. ACS Appl. Nano Mater. 2019, 2, 2909–2920.

[36]

Shimizu, K. I.; Sawabe, K.; Satsuma, A. Self-regenerative silver nanocluster catalyst for CO oxidation. ChemCatChem 2011, 3, 1290–1293.

[37]

Kubota, H.; Mine, S.; Toyao, T.; Maeno, Z.; Shimizu, K. I. Redox-driven reversible structural evolution of isolated silver atoms anchored to specific sites on γ-Al2O3. ACS Catal. 2022, 12, 544–559.

[38]

Richter, M.; Abramova, A.; Bentrup, U.; Fricke, R. Proof of reversible Ag+/Ag0 redox transformation on mesoporous alumina by in situ UV-vis spectroscopy. J. Appl. Spectrosc. 2004, 71, 400–403.

[39]

Ouyang, R. H.; Liu, J. X.; Li, W. X. Atomistic theory of Ostwald ripening and disintegration of supported metal particles under reaction conditions. J. Am. Chem. Soc. 2013, 135, 1760–1771.

[40]

Szanyi, J.; Kwak, J. H.; Chimentao, R. J.; Peden, C. H. F. Effect of H2O on the adsorption of NO2 on γ-Al2O3:  An in situ FTIR/MS study. J. Phys. Chem. C 2007, 111, 2661–2669.

[41]

Max, J. J.; Chapados, C. Isotope effects in liquid water by infrared spectroscopy. J. Chem. Phys. 2002, 116, 4626–4642.

[42]

Chakarova, K.; Drenchev, N.; Mihaylov, M.; Nikolov, P.; Hadjiivanov, K. OH/OD isotopic shift factors of isolated and H-bonded surface silanol groups. J. Phys. Chem. C 2013, 117, 5242–5248.

[43]

Salmeron, M.; Bluhm, H.; Tatarkhanov, N.; Ketteler, G.; Shimizu, T. K.; Mugarza, A.; Deng, X. Y.; Herranz, T.; Yamamoto, S.; Nilsson, A. Water growth on metals and oxides: Binding, dissociation and role of hydroxyl groups. Faraday Discuss. 2009, 141, 221–229.

[44]

Kraushofer, F.; Haager, L.; Eder, M.; Rafsanjani-Abbasi, A.; Jakub, Z.; Franceschi, G.; Riva, M.; Meier, M.; Schmid, M.; Diebold, U. et al. Single Rh adatoms stabilized on α-Fe2O3(11̅02) by coadsorbed water. ACS Energy Lett. 2022, 7, 375–380.

[45]

Liu, J. Y.; Hurt, R. H. Ion release kinetics and particle persistence in aqueous nano-silver colloids. Environ. Sci. Technol. 2010, 44, 2169–2175.

[46]

Shan, Y. L.; He, G. Z.; Du, J. P.; Sun, Y.; Liu, Z. Q.; Fu, Y.; Liu, F. D.; Shi, X. Y.; Yu, Y. B.; He, H. Strikingly distinctive NH3-SCR behavior over Cu-SSZ-13 in the presence of NO2. Nat. Commun. 2022, 13, 4606.

[47]

Jeong, H.; Lee, G.; Kim, B. S.; Bae, J.; Han, J. W.; Lee, H. Fully dispersed rh ensemble catalyst to enhance low-temperature activity. J. Am. Chem. Soc. 2018, 140, 9558–9565.

[48]

Wan, Q.; Wei, F. F.; Wang, Y. Q.; Wang, F. T.; Zhou, L. S.; Lin, S.; Xie, D. Q.; Guo, H. Single atom detachment from Cu clusters, and diffusion and trapping on CeO2(111): Implications in Ostwald ripening and atomic redispersion. Nanoscale 2018, 10, 17893–17901.

Nano Research
Pages 9107-9115
Cite this article:
Liu C, Li R, Wang F, et al. Water promoted structural evolution of Ag nanocatalysts supported on alumina. Nano Research, 2023, 16(7): 9107-9115. https://doi.org/10.1007/s12274-023-5735-6
Topics:

825

Views

9

Crossref

10

Web of Science

9

Scopus

0

CSCD

Altmetrics

Received: 22 February 2023
Revised: 24 March 2023
Accepted: 12 April 2023
Published: 08 June 2023
© Tsinghua University Press 2023
Return