AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Nanocellulose/nitrogen and fluorine co-doped graphene composite hydrogels for high-performance supercapacitors

Yong Zhang1,2( )Qingyun Zhou1,2Wenhui Ma3Chaohui Wang1,2Xuefeng Wang4Jiajun Chen1,2Tiantian Yu1,2Shan Fan1,2( )
College of Materials Science and Engineering, Graphene Functional Materials Research Laboratory, Qiqihar University, Qiqihar 161006, China
College of Materials Science and Engineering, Heilongjiang Province Key Laboratory of Polymeric Composition Material, Qiqihar University, Qiqihar 161006, China
School of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
Department of Practice Teaching and Equipment Management, Qiqihar University, Qiqihar 161006, China
Show Author Information

Graphical Abstract

Nanocellulose/nitrogen and fluorine co-doped graphene composite hydrogels based symmetric supercapacitors were assembled. Benefitting from the compact porous structures, medium specific surface area, and large heteroatom content, the as-prepared samples present excellent electrochemical properties.

Abstract

Three-dimensional graphene materials have been studied as typical supercapacitors electrode materials by virtue of their ultra-high specific surface area and good ion transport capacity. However, improvement of the poor volumetric electrochemical performance of these graphene materials has been required although they have high gravimetric energy density. In this work, nanocellulose/nitrogen and fluorine co-doped graphene composite hydrogels (NC-NFGHs) were prepared through a convenient hydrothermal approach utilizing ammonium fluoride as the heteroatom source. Nanocellulose (NC) and high concentration of graphene oxide (GO) were utilized to adjust the structure of NC-NFGHs and increase their packing density. Subsequently, the aqueous symmetric supercapacitor based on NC-NFGH-80 exhibits remarkable gravimetric (286.6 F·g−1) and volumetric (421.3 F·cm−3) specific capacitance at 0.3 A·g−1, good rate performance, and remarkable cycle stability up to 10,000 cycles. Besides, the all-solid-state flexible symmetric supercapacitors (ASSC) fabricated by NC-NFGH-80 also delivered a large specific capacitance of 117.1 F·g−1 at 0.3 A·g−1 and long service life over 10,000 cycles at 10 A·g−1. This compact porous structure and heteroatom co-doped graphene material supply a favorable strategy for high-performance supercapacitors.

Electronic Supplementary Material

Download File(s)
12274_2023_5736_MOESM1_ESM.pdf (432.2 KB)
12274_2023_5736_MOESM2_ESM.pdf (1 MB)

References

[1]

Zhang, J. Y.; Chen, Z. Y.; Wang, G. Y.; Hou, L. R.; Yuan, C. Z. Eco-friendly and scalable synthesis of micro-/mesoporous carbon sub-microspheres as competitive electrodes for supercapacitors and sodium-ion batteries. Appl. Surf. Sci. 2020, 533, 147511.

[2]

Zhang, J. Y.; Wu, D. X.; Zhang, Q.; Zhang, A. N.; Sun, J. F.; Hou, L. R.; Yuan, C. Z. Green self-activation engineering of metal-organic framework derived hollow nitrogen-doped carbon spheres towards supercapacitors. J. Mater. Chem. A 2022, 10, 2932–2944.

[3]

Wang, D.; Qi, S.; Qiu, Y.; Zhang, R.; Zhang, Q.; Liu, S. L.; Zhang, C. J.; Chen, Z. Y.; Pan, H.; Cao, J. et al. High-yield production of non-layered 2D carbon complexes: Thickness manipulation and carbon nanotube branches for enhanced lithium storage properties. J. Energy Chem. 2021, 59, 19–29.

[4]

Denis, D. K.; Sun, X.; Hou, L. R.; Chen, G. Z.; Yuan, C. Z. Rate balance design and construction of a conductive Ni0.5Co0.5MoO4 solid-solution microspherical superstructure toward advanced hybrid supercapacitors. ACS Appl. Energy Mater. 2021, 4, 9470–9478.

[5]

Zhou, L.; Cao, H.; Zhu, S. Q.; Hou, L. R.; Yuan, C. Z. Hierarchical micro-/mesoporous N- and O-enriched carbon derived from disposable cashmere: A competitive cost-effective material for high-performance electrochemical capacitors. Green Chem. 2015, 17, 2373–2382.

[6]

Chen, Z. Y.; Sun, J. F.; Bao, R. Q.; Sun, X.; Zhang, J. Y.; Hou, L. R.; Yuan, C. Z. A general eco-friendly production of bio-sources derived micro-/mesoporous carbons with robust supercapacitive behaviors and sodium-ion storage. ACS Sustainable Chem. Eng. 2019, 7, 779–789.

[7]

Qi, S.; Wang, D.; Li, W. J.; Zhang, R.; Liu, F.; Zhang, J. T.; Liu, Z. Y.; Guo, Y. N.; Wang, F. G.; Wen, G. W. Mass production of nitrogen and oxygen codoped carbon nanotubes by a delicately-designed Pechini method for supercapacitors and electrocatalysis. Nanoscale 2019, 11, 17425–17435.

[8]

Yang, P. Y.; Wu, Z. Y.; Jiang, Y. C.; Pan, Z. C.; Tian, W. C.; Jiang, L.; Hu, L. F. Fractal (NixCo1−x)9Se8 nanodendrite arrays with highly exposed ( 011¯) surface for wearable, all-solid-state supercapacitor. Adv. Energy Mater. 2018, 8, 1801392.

[9]

Wu, Z. Y.; Ye, F.; Liu, Q.; Pang, R. L. J.; Liu, Y.; Jiang, L.; Tang, Z. L.; Hu, L. F. Simultaneous incorporation of V and Mn element into polyanionic NASICON for high energy-density and long-lifespan Zn-ion storage. Adv. Energy Mater. 2022, 12, 2200654.

[10]

Wu, Z. Y.; Lu, C. J.; Ye, F.; Zhang, L.; Jiang, L.; Liu, Q.; Dong, H. L.; Sun, Z. M.; Hu, L. F. Bilayered VOPO4∙2H2O nanosheets with high-concentration oxygen vacancies for high-performance aqueous zinc-ion batteries. Adv. Funct. Mater. 2021, 31, 2106816.

[11]

Pan, Z. H.; Yang, C. H.; Chen, Z. W.; Ji, X. H. Construction of Ti3C2Tx/WOx heterostructures on carbon cloth for ultrahigh-mass loading flexible supercapacitor. Nano Res. 2022, 15, 8991–8999.

[12]

Hou, L. R.; Shi, Y. Y.; Zhu, S. Q.; Rehan, M.; Pang, G.; Zhang, X. G.; Yuan, C. Z. Hollow mesoporous hetero-NiCo2S4/Co9S8 submicro-spindles: Unusual formation and excellent pseudocapacitance towards hybrid supercapacitors. J. Mater. Chem. A 2017, 5, 133–144.

[13]

Yu, Q.; Jiang, J. C.; Jiang, L. Y.; Yang, Q. Q.; Yan, N. Advances in green synthesis and applications of graphene. Nano Res. 2021, 14, 3724–3743.

[14]

Zhou, J. S.; Lian, J.; Hou, L.; Zhang, J. C.; Gou, H. Y.; Xia, M. R.; Zhao, Y. F.; Strobel, T. A.; Tao, L.; Gao, F. M. Ultrahigh volumetric capacitance and cyclic stability of fluorine and nitrogen co-doped carbon microspheres. Nat. Commun. 2015, 6, 8503.

[15]

Murali, S.; Quarles, N.; Zhang, L. L.; Potts, J. R.; Tan, Z. Q.; Lu, Y. L.; Zhu, Y. W.; Ruoff, R. S. Volumetric capacitance of compressed activated microwave-expanded graphite oxide (a-MEGO) electrodes. Nano Energy 2013, 2, 764–768.

[16]

Yang, X. W.; Cheng, C.; Wang, Y. F.; Qiu, L.; Li, D. Liquid-mediated dense integration of graphene materials for compact capacitive energy storage. Science 2013, 341, 534–537.

[17]

Wu, Z. Y.; Lu, C. J.; Wang, Y. N.; Zhang, L.; Jiang, L.; Tian, W. C.; Cai, C. L.; Gu, Q. F.; Sun, Z. M.; Hu, L. F. Ultrathin VSe2 nanosheets with fast ion diffusion and robust structural stability for rechargeable zinc-ion battery cathode. Small 2020, 16, 2000698.

[18]

Ban, J. J.; Wen, X. H.; Lei, H. H.; Cao, G. Q.; Liu, X. H.; Niu, C. Y.; Shao, G. S.; Hu, J. H. In-plane grain boundary induced defect state in hierarchical NiCo-LDH and effect on battery-type charge storage. Nano Research 2023, 16, 4908–4916.

[19]

Zhang, X.; Zhang, H. T.; Li, C.; Wang, K.; Sun, X. Z.; Ma, Y. W. Recent advances in porous graphene materials for supercapacitor applications. RSC Adv. 2014, 4, 45862–45884.

[20]

Xu, Y. X.; Shi, G. Q.; Duan, X. F. Self-assembled three-dimensional graphene macrostructures: Synthesis and applications in supercapacitors. Acc. Chem. Res. 2015, 48, 1666–1675.

[21]

Yang, L.; He, X. J.; Wei, Y. C.; Bi, H. H.; Wei, F.; Li, H. Q.; Yuan, C. Z.; Qiu, J. S. Interconnected N/P co-doped carbon nanocage as high capacitance electrode material for energy storage devices. Nano Res. 2022, 15, 4068–4075.

[22]

Chen, Y. M.; Guo, M. H.; Xu, L.; Cai, Y. Y.; Tian, X. C.; Liao, X. B.; Wang, Z. Y.; Meng, J. S.; Hong, X. F.; Mai, L. Q. In-situ selective surface engineering of graphene micro-supercapacitor chips. Nano Res. 2022, 15, 1492–1499.

[23]

Fan, S.; Wei, L.; Liu, X. J.; Ma, W. H.; Lou, C. H.; Wang, J. K.; Zhang, Y. High-density oxygen-enriched graphene hydrogels for symmetric supercapacitors with ultrahigh gravimetric and volumetric performance. Int. J. Hydrogen Energy 2021, 46, 39969–39982.

[24]

Zhang, Y.; Wei, L.; Liu, X. J.; Ma, W. H.; Lou, C. H.; Wang, J. K.; Fan, S. Nanocellulose/N, O co-doped graphene composite hydrogels for high gravimetric and volumetric performance symmetric supercapacitors. Int. J. Hydrogen Energy 2022, 47, 33827–33838.

[25]

Kakaei, K.; Balavandi, A. Hierarchically porous fluorine-doped graphene nanosheets as efficient metal-free electrocatalyst for oxygen reduction in gas diffusion electrode. J. Colloid. Interface Sci. 2017, 490, 819–824.

[26]

An, H. R.; Li, Y.; Gao, Y.; Cao, C.; Han, J. K.; Feng, Y. Y.; Feng, W. Free-standing fluorine and nitrogen co-doped graphene paper as a high-performance electrode for flexible sodium-ion batteries. Carbon 2017, 116, 338–346.

[27]

Feng, Y. Y.; Zhang, X. Q.; Shen, Y. T.; Yoshino, K.; Feng, W. A mechanically strong, flexible and conductive film based on bacterial cellulose/graphene nanocomposite. Carbohydr. Polym. 2012, 87, 644–649.

[28]

Zhang, Y.; Wei, L.; Liu, X. J.; Ma, W. H.; Lou, C. H.; Wang, J. K.; Fan, S. Tromethamine functionalized nanocellulose/reduced graphene oxide composite hydrogels with ultrahigh gravimetric and volumetric performance for symmetric supercapacitors. J. Power Sources 2022, 543, 231851.

[29]

Jankovský, O.; Šimek, P.; Sedmidubský, D.; Matějková, S.; Janoušek, Z.; Šembera, F.; Pumera, M.; Sofer, Z. Water-soluble highly fluorinated graphite oxide. RSC Adv. 2014, 4, 1378–1387.

[30]

Li, C.; Wu, Z. Y.; Liang, H. W.; Chen, J. F.; Yu, S. H. Ultralight multifunctional carbon-based aerogels by combining graphene oxide and bacterial cellulose. Small 2017, 13, 1700453.

[31]

Lin, Z. Y.; Waller, G.; Liu, Y.; Liu, M. L.; Wong, C. P. Facile synthesis of nitrogen-doped graphene via pyrolysis of graphene oxide and urea, and its electrocatalytic activity toward the oxygen-reduction reaction. Adv. Energy Mater. 2012, 2, 884–888.

[32]

Tung, V. C.; Allen, M. J.; Yang, Y.; Kaner, R. B. High-throughput solution processing of large-scale graphene. Nat. Nanotechnol. 2009, 4, 25–29.

[33]

Wang, Z. F.; Wang, J. Q.; Li, Z. P.; Gong, P. W.; Liu, X. H.; Zhang, L. B.; Ren, J. F.; Wang, H. G.; Yang, S. R. Synthesis of fluorinated graphene with tunable degree of fluorination. Carbon 2012, 50, 5403–5410.

[34]

Guan, F. Y.; Chen, S. Y.; Sheng, N.; Chen, Y.; Yao, J. J.; Pei, Q. B.; Wang, H. P. Mechanically robust reduced graphene oxide/bacterial cellulose film obtained via biosynthesis for flexible supercapacitor. Chem. Eng. J. 2019, 360, 829–837.

[35]

Xiao, X. L.; Huang, X. Y.; Wang, A.; Cao, S. J.; Noroozi, M.; Panahi-Sarmad, M. Subtle devising of electro-induced shape memory behavior for cellulose/graphene aerogel nanocomposite. Carbohydr. Polym. 2022, 281, 119042.

[36]

Li, Z. J.; Del Cul, G. D.; Yan, W. F.; Liang, C. D.; Dai, S. Fluorinated carbon with ordered mesoporous structure. J. Am. Chem. Soc. 2004, 126, 12782–12783.

[37]

Valentini, L.; Cardinali, M.; Fortunati, E.; Torre, L.; Kenny, J. M. A novel method to prepare conductive nanocrystalline cellulose/graphene oxide composite films. Mater. Lett. 2013, 105, 4–7.

[38]

Arrigo, R.; Hävecker, M.; Wrabetz, S.; Blume, R.; Lerch, M.; McGregor, J.; Parrott, E. P. J.; Zeitler, J. A.; Gladden, L. F.; Knop-Gericke, A. et al. Tuning the acid/base properties of nanocarbons by functionalization via amination. J. Am. Chem. Soc. 2010, 132, 9616–9630.

[39]

Huang, S. Z.; Li, Y.; Feng, Y. Y.; An, H. R.; Long, P.; Qin, C. Q.; Feng, W. Nitrogen and fluorine co-doped graphene as a high-performance anode material for lithium-ion batteries. J. Mater. Chem. A 2015, 3, 23095–23105.

[40]

Cherusseri, J.; Kumar, K. S.; Pandey, D.; Barrios, E.; Thomas, J. Vertically aligned graphene-carbon fiber hybrid electrodes with superlong cycling stability for flexible supercapacitors. Small 2019, 15, 1902606.

[41]

Kundu, S.; Yadav, R. M.; Narayanan, T. N.; Shelke, M. V.; Vajtai, R.; Ajayan, P. M.; Pillai, V. K. Synthesis of N, F and S co-doped graphene quantum dots. Nanoscale 2015, 7, 11515–11519.

[42]

Yan, L. J.; Li, D.; Yan, T. T.; Chen, G. R.; Shi, L. Y.; An, Z. X.; Zhang, D. S. N,P,S-codoped hierarchically porous carbon spheres with well-balanced gravimetric/volumetric capacitance for supercapacitors. ACS Sustainable Chem. Eng. 2018, 6, 5265–5272.

[43]

Zhou, S.; Sherpa, S. D.; Hess, D. W.; Bongiorno, A. Chemical bonding of partially fluorinated graphene. J. Phys. Chem. C 2014, 118, 26402–26408.

[44]

Hu, Y. F.; Li, Z. C.; Wang, Z. P.; Wang, X. L.; Chen, W.; Wang, J. C.; Zhong, W. W.; Ma, R. G. Suppressing local dendrite hotspots via current density redistribution using a superlithiophilic membrane for stable lithium metal anode. Adv. Sci. 2023, 10, 2206995.

[45]

Yang, W. X.; Zhang, Y.; Liu, T. Y.; Huang, R.; Chai, S. G.; Chen, F.; Fu, Q. Completely green approach for the preparation of strong and highly conductive graphene composite film by using nanocellulose as dispersing agent and mechanical compression. ACS Sustainable Chem. Eng. 2017, 5, 9102–9113.

[46]

Shadkam, R.; Naderi, M.; Ghazitabar, A.; Akbari, S. Adsorption performance of reduced graphene-oxide/cellulose nano-crystal hybrid aerogels reinforced with waste-paper extracted cellulose-fibers for the removal of toluene pollution. Mater. Today Commun. 2021, 28, 102610.

[47]

Xu, X. Y.; Yang, J. D.; Zhou, X. F.; Jiang, S. Q.; Chen, W.; Liu, Z. P. Highly crumpled graphene-like material as compression-resistant electrode material for high energy-power density supercapacitor. Chem. Eng. J. 2020, 397, 125525.

[48]

Liu, H. Y.; Song, H. H.; Chen, X. H.; Zhang, S.; Zhou, J. S.; Ma, Z. K. Effects of nitrogen- and oxygen-containing functional groups of activated carbon nanotubes on the electrochemical performance in supercapacitors. J. Power Sources 2015, 285, 303–309.

[49]

Rotte, N. K.; Naresh, V.; Muduli, S.; Reddy, V.; Srikanth, V. V. S.; Martha, S. K. Microwave aided scalable synthesis of sulfur, nitrogen co-doped few-layered graphene material for high-performance supercapacitors. Electrochim. Acta 2020, 363, 137209.

[50]

An, H. R.; Li, Y.; Long, P.; Gao, Y.; Qin, C. Q.; Cao, C.; Feng, Y. Y.; Feng, W. Hydrothermal preparation of fluorinated graphene hydrogel for high-performance supercapacitors. J. Power Sources 2016, 312, 146–155.

[51]

Peng, W. J.; Li, H. Q.; Song, S. X. Synthesis of fluorinated graphene/CoAl-layered double hydroxide composites as electrode materials for supercapacitors. ACS Appl. Mater. Interfaces 2017, 9, 5204–5212.

[52]

Chen, Y. L.; Li, Y.; Yao, F. N.; Peng, C.; Cao, C.; Feng, Y. Y.; Feng, W. Nitrogen and fluorine co-doped holey graphene hydrogel as a binder-free electrode material for flexible solid-state supercapacitors. Sustainable Energy Fuels 2019, 3, 2237–2245.

[53]

Gui, Z.; Zhu, H. L.; Gillette, E.; Han, X. G.; Rubloff, G. W.; Hu, L. B.; Lee, S. B. Natural cellulose fiber as substrate for supercapacitor. ACS Nano 2013, 7, 6037–6046.

[54]

Lin, Z. P.; Xiao, B. B.; Huang, M.; Yan, L. H.; Wang, Z. P.; Huang, Y. C.; Shen, S. J.; Zhang, Q. H.; Gu, L.; Zhong, W. W. Realizing negatively charged metal atoms through controllabled-electron transfer in ternary Ir1−xRhxSb intermetallic alloy for hydrogen evolution reaction. Adv. Energy Mater. 2022, 12, 2200855.

[55]
Wang, X. Q.; Zhang, J. T.; Wang, Z. P.; Lin, Z. P.; Shen, S. J.; Zhong, W. W. Fabricating Ru single atoms and clusters on CoP for boosted hydrogen evolution reaction. Chin. J. Struc. Chem., in press, https://doi.org/10.1016/j.cjsc.2023.100035.
[56]

Huang, Y. C.; Hu, Z. Y.; Huang, L. A.; Wang, Z. P.; Lin, Z. P.; Shen, S. J.; Zhong, W. W.; Pan, J. Q. Phosphorus-modified cobalt single-atom catalysts loaded on crosslinked carbon nanosheets for efficient alkaline hydrogen evolution reaction. Nanoscale 2023, 15, 3550–3559.

[57]

Zhang, L. L.; Wang, Z. P.; Zhang, J. T.; Lin, Z. P.; Zhang, Q. H.; Zhong, W. W.; Wu, G. F. High activity and stability in Ni2P/(Co, Ni)OOH heterointerface with a multiple-hierarchy structure for alkaline hydrogen evolution reaction. Nano Research 2023, 16, 6552–6559.

[58]

Gong, Y. N.; Li, D. L.; Fu, Q.; Zhang, Y. P.; Pan, C. X. Nitrogen self-doped porous carbon for high-performance supercapacitors. ACS Appl. Energy Mater. 2020, 3, 1585–1592.

[59]

Zheng, Q. F.; Cai, Z. Y.; Ma, Z. Q.; Gong, S. Q. Cellulose nanofibril/reduced graphene oxide/carbon nanotube hybrid aerogels for highly flexible and all-solid-state supercapacitors. ACS Appl. Mater. Interfaces 2015, 7, 3263–3271.

[60]

Xu, Y. X.; Lin, Z. Y.; Huang, X. Q.; Liu, Y.; Huang, Y.; Duan, X. F. Flexible solid-state supercapacitors based on three-dimensional graphene hydrogel films. ACS Nano 2013, 7, 4042–4049.

[61]

Zhang, L. L.; Zhang, J. T.; Xu, A. J.; Lin, Z. P.; Wang, Z. P.; Zhong, W. W.; Shen, S. J.; Wu, G. F. Charge redistribution of Co9S8/MoS2 heterojunction microsphere enhances electrocatalytic hydrogen evolution. Biomimetics 2023, 8, 104.

[62]

Gao, K. Z.; Shao, Z. Q.; Li, J.; Wang, X.; Peng, X. Q.; Wang, W. J.; Wang, F. J. Cellulose nanofiber-graphene all solid-state flexible supercapacitors. J. Mater. Chem. A 2013, 1, 63–67.

[63]

Na, W.; Jun, J.; Park, J. W.; Lee, G.; Jang, J. Highly porous carbon nanofibers co-doped with fluorine and nitrogen for outstanding supercapacitor performance. J. Mater. Chem. A 2017, 5, 17379–17387.

[64]

Cao, N.; Wang, T.; Boukherroub, R.; Cai, Y. H.; Qin, Y. J.; Li, F. S.; Liu, P.; Shao, Q. G.; Liu, M. L.; Zang, X. B. Facile and secure synthesis of porous partially fluorinated graphene employing weakly coordinating anion for enhanced high-performance symmetric supercapacitor. J Materiomics 2022, 8, 113–122.

[65]

Deng, L. J.; Zhou, C. H.; Ma, Z. Y.; Fan, G. Methylene blue functionalized graphene as binder-free electrode for high-performance solid state supercapacitors. J. Colloid Interface Sci. 2020, 561, 416–425.

[66]
Wang, Z. P.; Lin, Z. P.; Wang, Y. L.; Shen, S. J.; Zhang, Q. H.; Wang, J. C.; Zhong, W. W. Nontrivial topological surface states in Ru3Sn7 toward wide pH-range hydrogen evolution reaction. Adv. Mater., in press, https://doi.org/10.1002/adma.202302007.
[67]

Zheng, Z. B.; Liang, W. Z.; Lin, R. Z.; Hu, Z.; Wang, Y. C.; Lu, H. S.; Zhong, W. W.; Shen, S. J.; Pan, Y. Facile synthesis of zinc indium oxide nanofibers distributed with low content of silver for superior antibacterial activity. Small Struct. 2023, 4, 2200291.

Nano Research
Pages 9519-9529
Cite this article:
Zhang Y, Zhou Q, Ma W, et al. Nanocellulose/nitrogen and fluorine co-doped graphene composite hydrogels for high-performance supercapacitors. Nano Research, 2023, 16(7): 9519-9529. https://doi.org/10.1007/s12274-023-5736-5
Topics:

973

Views

18

Crossref

19

Web of Science

19

Scopus

0

CSCD

Altmetrics

Received: 30 March 2023
Revised: 06 April 2023
Accepted: 12 April 2023
Published: 31 May 2023
© Tsinghua University Press 2023
Return