Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
It is important and challenging to analyze nanocluster structure with atomic precision. Herein, α-hemolysin nanopore was used to identify nanoclusters at the single molecule level by providing two-dimensional (2D) dwell time–current blockage spectra and translocation event frequency which sensitively depended on their structures. Nanoclusters such as Anderson, Keggin, Dawson, and a few lacunary Dawson polyoxometalates with very similar structures, even with only a two-atom difference, could be discriminated. This nanopore device could simultaneously measure multiple nanoclusters in a mixture qualitatively and quantitatively. Furthermore, molecular dynamics (MD) simulations provided microscopic understandings of the nanocluster translocation dynamics and yielded 2D dwell time–current blockage spectra in close agreement with experiments. The nanopore platform provides a novel powerful tool for nanocluster characterization.
Jin, R. C.; Zeng, C. J.; Zhou, M.; Chen, Y. X. Atomically precise colloidal metal nanoclusters and nanoparticles: Fundamentals and opportunities. Chem. Rev. 2016, 116, 10346–10413.
Liu, Q. D.; He, P. L.; Yu, H. D.; Gu, L.; Ni, B.; Wang, D.; Wang, X. Single molecule-mediated assembly of polyoxometalate single-cluster rings and their three-dimensional superstructures. Sci. Adv. 2019, 5, eaa1081.
Vilà-Nadal, L.; Mitchell, S. G.; Long, D. L.; Rodríguez-Fortea, A.; López, X.; Poblet, J. M.; Cronin. L. Exploring the rotational isomerism in non-classical Wells–Dawson anions {W18X}: A combined theoretical and mass spectrometry study. Dalton Trans. 2012, 41, 2264–2271.
Wang, S. X.; Meng, X. M.; Das, A.; Li, T.; Song, Y. B.; Cao, T. T.; Zhu, X. Y.; Zhu, M. Z.; Jin, R. C. A 200-fold quantum yield boost in the photoluminescence of silver-doped AgxAu25−x nanoclusters: The 13th silver atom matters. Angew. Chem., Int. Ed. 2014, 53, 2376–2380.
Gao, W. P.; Tieu, P.; Addiego, C.; Ma, Y. L.; Wu, J. B.; Pan, X. Q. Probing the dynamics of nanoparticle formation from a precursor at atomic resolution. Sci. Adv. 2019, 5, eaau9590.
Crasto, D.; Malola, S.; Brosofsky, G.; Dass, A.; Häkkinen, H. Single crystal XRD structure and theoretical analysis of the chiral Au30S(S-t-Bu)18 cluster. J. Am. Chem. Soc. 2014, 136, 5000–5005.
Reetz, M. T.; Helbig, W. Size-selective synthesis of nanostructured transition metal clusters. J. Am. Chem. Soc. 1994, 116, 7401–7402.
Chen, T. K.; Yao, Q. F.; Nasaruddin, R. R.; Xie, J. P. Electrospray ionization mass spectrometry: A powerful platform for noble-metal nanocluster analysis. Angew. Chem., Int. Ed. 2019, 58, 11967–11977.
Tian, S. B.; Li, Y. Z.; Li, M. B.; Yuan, J. Y.; Yang, J. L.; Wu, Z. K.; Jin, R. C. Structural isomerism in gold nanoparticles revealed by X-ray crystallography. Nat. Commun. 2015, 6, 8667.
Neidig, M. L.; Sharma, J.; Yeh, H. C.; Martinez, J. S.; Conradson, S. D.; Shreve, A. P. Ag K-edge EXAFS analysis of DNA-templated fluorescent silver nanoclusters: Insight into the structural origins of emission tuning by DNA sequence variations. J. Am. Chem. Soc. 2011, 133, 11837–11839.
Cai, R. S.; Ellis, P. R; Yin, J. L.; Liu, J.; Brown, C. M.; Griffin, R.; Chang, G. J.; Yang, D. J.; Ren, J.; Cooke, K. et al. Performance of preformed Au/Cu nanoclusters deposited on MgO powders in the catalytic reduction of 4-nitrophenol in solution. Small 2018, 14, 1703734.
Chiu, T. H.; Liao, J. H.; Gam, F.; Wu, Y. Y.; Wang, X. P.; Kahlal, S.; Saillard, J. Y.; Liu, C. W. Hydride-containing eight-electron Pt/Ag superatoms: Structure, bonding, and multi-NMR studies. J. Am. Chem. Soc. 2022, 144, 10599–10607.
Ma, H.; Ying, Y. L. Recent progress on nanopore electrochemistry and advanced data processing. Curr. Opin. Electrochem. 2021, 26, 100675.
Liu, Z. H.; Du, Y.; Zhang, P. F.; Zhuang, Z. C.; Wang, D. S. Bringing catalytic order out of chaos with nitrogen-doped ordered mesoporous carbon. Matter 2021, 4, 3161–3194.
Liu, Z. H.; Du, Y.; Yu, R. H.; Zheng, M. B.; Hu, R.; Wu, J. S.; Xia, Y. Y.; Zhuang, Z. C.; Wang, D. S. Tuning mass transport in electrocatalysis down to sub-5 nm through nanoscale grade separation. Angew. Chem., Int. Ed. 2023, 62, e202212653.
Ying, Y. L.; Hu, Z. L.; Zhang, S. L.; Qing, Y. J.; Fragasso, A.; Maglia, G.; Meller, A.; Bayley, H.; Dekker, C.; Long, Y. T. Nanopore-based technologies beyond DNA sequencing. Nat. Nanotechnol. 2022, 17, 1136–1146.
Wang, Y. Q.; Zhang, S. Y.; Jia, W. D.; Fan, P. P.; Wang, L. Y.; Li, X. Y.; Chen, J. L.; Cao, Z. Y.; Du, X. Y.; Liu, Y. et al. Identification of nucleoside monophosphates and their epigenetic modifications using an engineered nanopore. Nat. Nanotechnol. 2022, 17, 976–983.
Niu, X. L.; Liu, Q. H.; Xu, Z. H.; Chen, Z. F.; Xu, L. H.; Xu, L. H.; Li, J. H.; Fang, X. Y. Molecular mechanisms underlying the extreme mechanical anisotropy of the flaviviral exoribonuclease-resistant RNAs (xrRNAs). Nat. Commun. 2020, 11, 5496.
Tsutsui, M.; He, Y. H.; Yokota, K.; Arima, A.; Hongo, S.; Taniguchi, M.; Washio, T.; Kawai, T. Particle trajectory-dependent ionic current blockade in low-aspect-ratio pores. ACS Nano 2016, 10, 803–809.
German, S. R.; Hurd, T. S.; White, H. S.; Mega, T. L. Sizing individual Au nanoparticles in solution with sub-nanometer resolution. ACS Nano 2015, 9, 7186–7194.
Panday, N.; Qian, G. M.; Wang, X. W.; Chang, S.; Pandey, P.; He, J. Simultaneous ionic current and potential detection of nanoparticles by a multifunctional nanopipette. ACS Nano 2016, 10, 11237–11248.
Song, L. Z.; Hobaugh, M. R.; Shustak, C.; Cheley, S.; Bayley, H.; Gouaux, J. E. Structure of staphylococcal α-hemolysin, a heptameric transmembrane pore. Science 1996, 274, 1859–1865.
Campos, E.; McVey, C. E.; Carney, R. P.; Stellacci, F.; Astier, Y.; Yates, J. Sensing single mixed-monolayer protected gold nanoparticles by the α-hemolysin nanopore. Anal. Chem. 2013, 85, 10149–10158.
Campos, E. J.; McVey, C. E.; Astier, Y. Stochastic detection of MPSA-gold nanoparticles using a α-hemolysin nanopore equipped with a noncovalent molecular adaptor. Anal. Chem. 2016, 88, 6214–6222.
Ettedgui, J.; Kasianowicz, J. J.; Balijepalli, A. Single molecule discrimination of heteropolytungstates and their isomers in solution with a nanometer-scale pore. J. Am. Chem. Soc. 2016, 138, 7228–7231.
Nomiya, K.; Takahashi, T.; Shirai, T.; Miwa, M. Anderson-type heteropolyanions of molybdenum(VI) and tungsten(VI). Polyhedron 1987, 6, 213–218.
Tayebee, R. Epoxidation of some olefins with hydrogen peroxide catalyzed by heteropolyoxometalates. Asian J. Chem. 2008, 20, 8–14.
Graham, C. R.; Finke, R. G. The classic Wells–Dawson polyoxometalate, K6[α-P2W18O62]·14H2O. Answering an 88 year-old question: What is its preferred, optimum synthesis? Inorg. Chem. 2008, 47, 3679–3686.
Ke, Q.; Gong, X. T.; Liao, S. W.; Duan, C. X.; Li, L. B. Effects of thermostats/barostats on physical properties of liquids by molecular dynamics simulations. J. Mol. Liq. 2022, 365, 120116.
Abraham, M. J.; Murtola, T.; Schulz, R.; Páll, S.; Smith, J. C.; Hess, B.; Lindahl, E. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 2015, 1–2, 19–25.
Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graph. 1996, 14, 33–38.
Long, D. L.; Burkholder, E.; Cronin, L. Polyoxometalate clusters, nanostructures and materials: From self assembly to designer materials and devices. Chem. Soc. Rev. 2007, 36, 105–121.
Zhang, J.; Song, Y. F.; Cronin, L.; Liu, T. B. Self-assembly of organic–inorganic hybrid amphiphilic surfactants with large polyoxometalates as polar head groups. J. Am. Chem. Soc. 2008, 130, 14408–14409.
Wang, Y. F.; Weinstock, I. A. Cation mediated self-assembly of inorganic cluster anion building blocks. Dalton Trans. 2010, 39, 6143–6152.
Wang, X. C.; Zhou, Y.; Chen, G. J.; Li, J.; Long, Z. Y.; Wang, J. Morphology-controlled preparation of heteropolyanion-derived mesoporous solid base. ACS Sustainable Chem. Eng. 2014, 2, 1918–1927.
López, X.; Nieto-Draghi, C.; Bo, C.; Avalos, J. B.; Poblet, J. M. Polyoxometalates in solution: Molecular dynamics simulations on the α-PW12O403− Keggin anion in aqueous media. J. Phys. Chem. A 2005, 109, 1216–1222.
Moussawi, M. A.; Leclerc-Laronze, N.; Floquet, S.; Abramov, P. A.; Sokolov, M. N.; Cordier, S.; Ponchel, A.; Monflier, E.; Bricout, H.; Landy, D. et al. Polyoxometalate, cationic cluster, and γ-cyclodextrin: From primary interactions to supramolecular hybrid materials. J. Am. Chem. Soc. 2017, 139, 12793–12803.
Li, M. Y.; Ying, Y. L.; Yu, J.; Liu, S. C.; Wang, Y. Q.; Li, S.; Long, Y. T. Revisiting the origin of nanopore current blockage for volume difference sensing at the atomic level. JACS Au 2021, 1, 967–976.
Deamer, D. W.; Branton, D. Characterization of nucleic acids by nanopore analysis. Acc. Chem. Res. 2002, 35, 817–825.
Zhao, D. H.; Chen, H.; Wang, Y. Q.; Li, B.; Duan, C. X.; Li, Z. X.; Li, L. B. Molecular dynamics simulation on DNA translocating through MoS2 nanopores with various structures. Front. Chem. Sci. Eng. 2021, 15, 922–934.
Henrickson, S. E.; Misakian, M.; Robertson, B.; Kasianowicz, J. J. Driven DNA transport into an asymmetric nanometer-scale pore. Phys. Rev. Lett. 2000, 85, 3057–3060.