AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Shape-dependence in seeded-growth of Pd-Cu solid solution from Pd nanostructure towards methanol oxidation electrocatalyst

Lianxi Si1Hui Li2Yu Zhang2Donghao Zhang2Xiaowei An3Mengmeng Yao1Yuanyuan Shao1Jesse Zhu1Shi Hu2( )
School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
Department of Chemistry, School of Science, Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin 300072, China
College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
Show Author Information

Graphical Abstract

Cu could be alloyed only with Pd nanosheets rather than Pd nanocubes nor Pd nano-tetrahedrons, revealing a shape-dependence.

Abstract

Ultrathin Pd nanosheets (NSs) have great advantages in catalysis due to their large specific surface area and high percentage of under-coordinated atoms. However, the electrochemical performance still can be improved via composition-controllable growth of their solid solution. Herein, seeded alloying strategy was proposed to synthesize Pd-Cu solid solution from Pd NSs and Pd-Cu nanostructures with tunable molar ratios obtained by changing the amount of Cu precursor. As compared to the pristine Pd NSs, the Pd-Cu solid solution shows significantly enhanced methanol oxidation reaction (MOR) performance over those of Pd NSs and homemade Pd/C as the incorporation of Cu weakens the adsorption of CO intermediate on Pd in the MOR process. The choice of template is pivotal to the growth, as a shape-dependent behavior could be identified in the alloying of Cu with Pd nanosheets enclosed by {111} and {100} facets, Pd nanocubes enclosed by {100} facet, and Pd nano-tetrahedrons enclosed by {111} facet. The Pd-Cu solid solution with tunable composition can only be obtained from Pd NSs and the shape-dependent alloying process is mainly determined by the diffusion barrier and the minimum diffusion depth of the different facets.

Electronic Supplementary Material

Download File(s)
12274_2023_5741_MOESM1_ESM.pdf (5.3 MB)

References

[1]

Seh, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I.; Norskov, J. K.; Jaramillo, T. F. Combining theory and experiment in electrocatalysis: Insights into materials design. Science 2017, 355, eaad4998.

[2]

Luo, M. C.; Zhao, Z. L.; Zhang, Y. L.; Sun, Y. J.; Xing, Y.; Lv, F.; Yang, Y.; Zhang, X.; Hwang, S.; Qin, Y. N. et al. PdMo bimetallene for oxygen reduction catalysis. Nature 2019, 574, 81–85.

[3]

He, T. O.; Wang, W. C.; Shi, F. L.; Yang, X. L.; Li, X.; Wu, J. B.; Yin, Y. D.; Jin, M. S. Mastering the surface strain of platinum catalysts for efficient electrocatalysis. Nature 2021, 598, 76–81.

[4]

Xue, J.; Han, G. T.; Ye, W. N.; Sang, Y. T.; Li, H. L.; Guo, P. Z.; Zhao, X. S. Structural regulation of PdCu2 nanoparticles and their electrocatalytic performance for ethanol oxidation. ACS Appl. Mater. Interfaces 2016, 8, 34497–34505.

[5]

Li, W. H.; Yang, J. R.; Wang, D. S. Long-range interactions in diatomic catalysts boosting electrocatalysis. Angew. Chem., Int. Ed. 2022, 61, e202213318.

[6]

Lou, W. H.; Ali, A.; Shen, P. K. Recent development of Au arched Pt nanomaterials as promising electrocatalysts for methanol oxidation reaction. Nano Res. 2021, 15, 18–37.

[7]

Xiong, Y.; Dong, J. C.; Huang, Z. Q.; Xin, P. Y.; Chen, W. X.; Wang, Y.; Li, Z.; Jin, Z.; Xing, W.; Zhuang, Z. B. et al. Single-atom Rh/N-doped carbon electrocatalyst for formic acid oxidation. Nat. Nanotechnol. 2020, 15, 390–397.

[8]

Guo, X. Y.; Hu, Z.; Lv, J. X.; Li, H.; Zhang, Q. H.; Gu, L.; Zhou, W.; Zhang, J. W.; Hu, S. Fine-tuning of Pd-Rh core–shell catalysts by interstitial hydrogen doping for enhanced methanol oxidation. Nano Res. 2022, 15, 1288–1294.

[9]

Ma, L.; Chu, D.; Chen, R. R. Comparison of ethanol electro-oxidation on Pt/C and Pd/C catalysts in alkaline media. Int. J. Hyd. Energy 2012, 37, 11185–11194.

[10]

Xu, H.; Shang, H. Y.; Wang, C.; Du, Y. K. Recent progress of ultrathin 2D Pd-based nanomaterials for fuel cell electrocatalysis. Small 2021, 17, 2005092.

[11]

Zhang, X. B.; Lian, C.; Chen, Z.; Chen, C.; Li, Y. D. Preparation of freestanding palladium nanosheets modified with gold nanoparticles at edges. Nano Res. 2018, 11, 4142–4148.

[12]

Han, A. L.; Zhang, Z. D.; Li, X. Y.; Wang, D. S.; Li, Y. D. Atomic thickness catalysts: Synthesis and applications. Small Methods 2020, 4, 2000248.

[13]

Wang, Y.; Zheng, M.; Li, Y. R.; Ye, C. L.; Chen, J.; Ye, J. Y.; Zhang, Q. H.; Li, J.; Zhou, Z. Y.; Fu, X. Z. et al. p-d orbital hybridization induced by a monodispersed Ga site on a Pt3Mn nanocatalyst boosts ethanol electrooxidation. Angew. Chem., Int. Ed. 2022, 61, e202115735.

[14]

Huang, X. Q.; Tang, S. H.; Mu, X. L.; Dai, Y.; Chen, G. X.; Zhou, Z. Y.; Ruan, F. X.; Yang, Z. L.; Zheng, N. F. Freestanding palladium nanosheets with plasmonic and catalytic properties. Nat. Nanotechnol. 2011, 6, 28–32.

[15]

Wang, Y.; Zheng, X. B.; Wang, D. S. Design concept for electrocatalysts. Nano Res. 2022, 15, 1730–1752.

[16]

Xie, H.; Chen, S. Q.; Liang, J. S.; Wang, T. Y.; Hou, Z. F.; Wang, H. L.; Chai, G. L.; Li, Q. Weakening intermediate bindings on CuPd/Pd core/shell nanoparticles to achieve Pt-like bifunctional activity for hydrogen evolution and oxygen reduction reactions. Adv. Funct. Mater. 2021, 31, 2100883.

[17]

Zhang, K. W.; Wang, C.; You, H. M.; Zou, B.; Guo, S. Y.; Li, S. J.; Du, Y. K. Advanced plasmon-driven ethylene glycol oxidation over 3D ultrathin lotus-like PdCu nanosheets. Chem. Eng. J. 2022, 438, 135666.

[18]

Chen, Y. J.; Pei, J. J.; Chen, Z.; Li, A.; Ji, S. F.; Rong, H. P.; Xu, Q.; Wang, T.; Zhang, A. J.; Tang, H. L. et al. Pt atomic layers with tensile strain and rich defects boost ethanol electrooxidation. Nano Lett. 2022, 22, 7563–7571.

[19]

Qiu, Y. J.; Zhang, J.; Jin, J.; Sun, J. Q.; Tang, H. L.; Chen, Q. Q.; Zhang, Z. D.; Sun, W. M.; Meng, G.; Xu, Q. et al. Construction of Pd-Zn dual sites to enhance the performance for ethanol electro-oxidation reaction. Nat. Commun. 2021, 12, 5273.

[20]

Huang, W. J.; Kang, X. L.; Xu, C.; Zhou, J. H.; Deng, J.; Li, Y. G.; Cheng, S. 2D PdAg alloy nanodendrites for enhanced ethanol electroxidation. Adv. Mater. 2018, 30, 1706962.

[21]

Fan, J. C.; Yu, S. S.; Qi, K.; Liu, C.; Zhang, L.; Zhang, H. Y.; Cui, X. Q.; Zheng, W. T. Synthesis of ultrathin wrinkle-free PdCu alloy nanosheets for modulating d-band electrons for efficient methanol oxidation. J. Mater. Chem. A 2018, 6, 8531–8536.

[22]

Zhai, Y. L.; Zhu, Z. J.; Hong, W.; Dong, S. J. A facile strategy to PdCu bimetallic alloy nanosponges with highly porous features as a high-performance electrocatalytic activity for ethanol electrooxidation in an alkaline Medium. Electroanalysis 2015, 27, 1871–1875.

[23]

Fan, A. X.; Qin, C. L.; Zhao, R. X.; Sun, H. X.; Sun, H.; Dai, X. P.; Ye, J. Y.; Sun, S. G.; Lu, Y. H.; Zhang, X. Phosphorus-doping-tuned PtNi concave nanocubes with high-index facets for enhanced methanol oxidation reaction. Nano Res. 2022, 15, 6961–6968.

[24]

Iwasita, T. Electrocatalysis of methanol oxidation. Electrochim. Acta 2002, 47, 3663–3674.

[25]

Lv, H.; Lopes, A.; Xu, D. D.; Liu, B. Multimetallic hollow mesoporous nanospheres with synergistically structural and compositional effects for highly efficient ethanol electrooxidation. ACS Cent. Sci. 2018, 4, 1412–1419.

[26]

Wang, Y.; Wang, G. W.; Li, G. W.; Huang, B.; Pan, J.; Liu, Q.; Han, J. J.; Xiao, L.; Lu, J. T.; Zhuang, L. Pt-Ru catalyzed hydrogen oxidation in alkaline media: Oxophilic effect or electronic effect. Energy Environ. Sci. 2015, 8, 177–181.

[27]

Yan, Y. C.; Du, J. S.; Gilroy, K. D.; Yang, D. R.; Xia, Y. N.; Zhang, H. Intermetallic nanocrystals: Syntheses and catalytic applications. Adv. Mater. 2017, 29, 1605997.

[28]

Lv, H.; Sun, L. Z.; Xu, D. D.; Ma, Y. H.; Liu, B. When ternary PdCuP alloys meet ultrathin nanowires: Synergic boosting of catalytic performance in ethanol electrooxidation. Appl. Catal. B 2019, 253, 271–277.

[29]

Yang, N. L.; Zhang, Z. C.; Chen, B.; Huang, Y.; Chen, J. Z.; Lai, Z. C.; Chen, Y.; Sindoro, M.; Wang, A. L.; Cheng, H. F. et al. Synthesis of ultrathin PdCu alloy nanosheets used as a highly efficient electrocatalyst for formic acid oxidation. Adv. Mater. 2017, 29, 1700769.

[30]

Zhao, X. J.; Dai, L.; Qin, Q.; Pei, F.; Hu, C. Y.; Zheng, N. F. Self-supported 3D PdCu alloy nanosheets as a bifunctional catalyst for electrochemical reforming of ethanol. Small 2017, 13, 1602970.

[31]

Tran, N. T.; Liao, H. B.; Feng, X. L.; Xu, Z. Z.; Liedberg, B. Synthesis of highly branched hollow trimetallic PdAgCu nanoparticles. Nanotechnology 2020, 31, 185601.

[32]

Li, Y.; Yan, Y. C.; Li, Y. H.; Zhang, H.; Li, D. S.; Yang, D. R. Size-controlled synthesis of Pd nanosheets for tunable plasmonic properties. CrystEngComm 2015, 17, 1833–1838.

[33]

Jin, M. S.; Liu, H. Y.; Zhang, H.; Xie, Z. X.; Liu, J. Y.; Xia, Y. N. Synthesis of Pd nanocrystals enclosed by {100} facets and with sizes < 10 nm for application in CO oxidation. Nano Res. 2011, 4, 83–91.

[34]

Zhao, Z. P.; Huang, X. Q.; Li, M. F.; Wang, G. M.; Lee, C.; Zhu, E. B.; Duan, X. F.; Huang, Y. Synthesis of stable shape-controlled catalytically active β-palladium hydride. J. Am. Chem. Soc. 2015, 137, 15672–15675.

[35]

Yan, Y. C.; Shan, H.; Li, G.; Xiao, F.; Jiang, Y. Y.; Yan, Y. Y.; Jin, C. H.; Zhang, H.; Wu, J. B.; Yang, D. R. Epitaxial growth of multimetallic Pd@PtM (M = Ni, Rh, Ru) core–shell nanoplates realized by in situ-produced co from interfacial catalytic reactions. Nano Lett. 2016, 16, 7999–8004.

[36]

Chen, C. H.; Qian, N. K.; Li, J. J.; Li, X.; Yang, D. R.; Zhang, H. Facile synthesis of PdCuRu porous nanoplates as highly efficient electrocatalysts for hydrogen evolution reaction in alkaline medium. Metals 2021, 11, 1451.

[37]

Hu, S. Z.; Scudiero, L.; Ha, S. Electronic effect on oxidation of formic acid on supported Pd-Cu bimetallic surface. Electrochim. Acta 2012, 83, 354–358.

[38]

Chen, D.; Xu, L. L.; Liu, H.; Yang, J. Rough-surfaced bimetallic copper-palladium alloy multicubes as highly bifunctional electrocatalysts for formic acid oxidation and oxygen reduction. Green Energy Environ. 2019, 4, 254–263.

[39]

Ren, M. J.; Zhou, Y.; Tao, F. F.; Zou, Z. Q.; Akins, D. L.; Yang, H. Controllable modification of the electronic structure of carbon-supported core–shell Cu@Pd catalysts for formic acid oxidation. J. Phys. Chem. C 2014, 118, 12669–12675.

[40]

Xiao, W. P.; Zhu, J.; Han, L. L.; Liu, S. F.; Wang, J.; Wu, Z. X.; Lei, W.; Xuan, C. J.; Xin, H. L.; Wang, D. L. Pt skin on Pd-Co-Zn/C ternary nanoparticles with enhanced Pt efficiency toward ORR. Nanoscale 2016, 8, 14793–14802.

[41]

Jin, L. J.; Xu, H.; Chen, C. Y.; Shang, H. Y.; Wang, Y.; Wang, C.; Du, Y. K. Three-dimensional PdCuM (M = Ru, Rh, Ir) trimetallic alloy nanosheets for enhancing methanol oxidation electrocatalysis. ACS Appl. Mater. Interfaces 2019, 11, 42123–42130.

[42]

Gao, F.; Zhang, Y. P.; Ren, F. F.; Shiraishi, Y.; Du, Y. K. Universal surfactant-free strategy for self-standing 3D tremella-like Pd-M (M = Ag, Pb, and Au) nanosheets for superior alcohols electrocatalysis. Adv. Funct. Mater. 2020, 30, 2000255.

[43]

Wang, C. Y.; Chen, D. P.; Sang, X. H.; Unocic, R. R.; Skrabalak, S. E. Size-dependent disorder-order transformation in the synthesis of monodisperse intermetallic PdCu nanocatalysts. ACS Nano 2016, 10, 6345–6353.

Nano Research
Pages 9116-9124
Cite this article:
Si L, Li H, Zhang Y, et al. Shape-dependence in seeded-growth of Pd-Cu solid solution from Pd nanostructure towards methanol oxidation electrocatalyst. Nano Research, 2023, 16(7): 9116-9124. https://doi.org/10.1007/s12274-023-5741-8
Topics:

997

Views

9

Crossref

8

Web of Science

9

Scopus

0

CSCD

Altmetrics

Received: 20 March 2023
Revised: 10 April 2023
Accepted: 13 April 2023
Published: 08 June 2023
© Tsinghua University Press 2023
Return