Graphical Abstract

Ultrathin Pd nanosheets (NSs) have great advantages in catalysis due to their large specific surface area and high percentage of under-coordinated atoms. However, the electrochemical performance still can be improved via composition-controllable growth of their solid solution. Herein, seeded alloying strategy was proposed to synthesize Pd-Cu solid solution from Pd NSs and Pd-Cu nanostructures with tunable molar ratios obtained by changing the amount of Cu precursor. As compared to the pristine Pd NSs, the Pd-Cu solid solution shows significantly enhanced methanol oxidation reaction (MOR) performance over those of Pd NSs and homemade Pd/C as the incorporation of Cu weakens the adsorption of CO intermediate on Pd in the MOR process. The choice of template is pivotal to the growth, as a shape-dependent behavior could be identified in the alloying of Cu with Pd nanosheets enclosed by {111} and {100} facets, Pd nanocubes enclosed by {100} facet, and Pd nano-tetrahedrons enclosed by {111} facet. The Pd-Cu solid solution with tunable composition can only be obtained from Pd NSs and the shape-dependent alloying process is mainly determined by the diffusion barrier and the minimum diffusion depth of the different facets.
Seh, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I.; Norskov, J. K.; Jaramillo, T. F. Combining theory and experiment in electrocatalysis: Insights into materials design. Science 2017, 355, eaad4998.
Luo, M. C.; Zhao, Z. L.; Zhang, Y. L.; Sun, Y. J.; Xing, Y.; Lv, F.; Yang, Y.; Zhang, X.; Hwang, S.; Qin, Y. N. et al. PdMo bimetallene for oxygen reduction catalysis. Nature 2019, 574, 81–85.
He, T. O.; Wang, W. C.; Shi, F. L.; Yang, X. L.; Li, X.; Wu, J. B.; Yin, Y. D.; Jin, M. S. Mastering the surface strain of platinum catalysts for efficient electrocatalysis. Nature 2021, 598, 76–81.
Xue, J.; Han, G. T.; Ye, W. N.; Sang, Y. T.; Li, H. L.; Guo, P. Z.; Zhao, X. S. Structural regulation of PdCu2 nanoparticles and their electrocatalytic performance for ethanol oxidation. ACS Appl. Mater. Interfaces 2016, 8, 34497–34505.
Li, W. H.; Yang, J. R.; Wang, D. S. Long-range interactions in diatomic catalysts boosting electrocatalysis. Angew. Chem., Int. Ed. 2022, 61, e202213318.
Lou, W. H.; Ali, A.; Shen, P. K. Recent development of Au arched Pt nanomaterials as promising electrocatalysts for methanol oxidation reaction. Nano Res. 2021, 15, 18–37.
Xiong, Y.; Dong, J. C.; Huang, Z. Q.; Xin, P. Y.; Chen, W. X.; Wang, Y.; Li, Z.; Jin, Z.; Xing, W.; Zhuang, Z. B. et al. Single-atom Rh/N-doped carbon electrocatalyst for formic acid oxidation. Nat. Nanotechnol. 2020, 15, 390–397.
Guo, X. Y.; Hu, Z.; Lv, J. X.; Li, H.; Zhang, Q. H.; Gu, L.; Zhou, W.; Zhang, J. W.; Hu, S. Fine-tuning of Pd-Rh core–shell catalysts by interstitial hydrogen doping for enhanced methanol oxidation. Nano Res. 2022, 15, 1288–1294.
Ma, L.; Chu, D.; Chen, R. R. Comparison of ethanol electro-oxidation on Pt/C and Pd/C catalysts in alkaline media. Int. J. Hyd. Energy 2012, 37, 11185–11194.
Xu, H.; Shang, H. Y.; Wang, C.; Du, Y. K. Recent progress of ultrathin 2D Pd-based nanomaterials for fuel cell electrocatalysis. Small 2021, 17, 2005092.
Zhang, X. B.; Lian, C.; Chen, Z.; Chen, C.; Li, Y. D. Preparation of freestanding palladium nanosheets modified with gold nanoparticles at edges. Nano Res. 2018, 11, 4142–4148.
Han, A. L.; Zhang, Z. D.; Li, X. Y.; Wang, D. S.; Li, Y. D. Atomic thickness catalysts: Synthesis and applications. Small Methods 2020, 4, 2000248.
Wang, Y.; Zheng, M.; Li, Y. R.; Ye, C. L.; Chen, J.; Ye, J. Y.; Zhang, Q. H.; Li, J.; Zhou, Z. Y.; Fu, X. Z. et al. p-d orbital hybridization induced by a monodispersed Ga site on a Pt3Mn nanocatalyst boosts ethanol electrooxidation. Angew. Chem., Int. Ed. 2022, 61, e202115735.
Huang, X. Q.; Tang, S. H.; Mu, X. L.; Dai, Y.; Chen, G. X.; Zhou, Z. Y.; Ruan, F. X.; Yang, Z. L.; Zheng, N. F. Freestanding palladium nanosheets with plasmonic and catalytic properties. Nat. Nanotechnol. 2011, 6, 28–32.
Wang, Y.; Zheng, X. B.; Wang, D. S. Design concept for electrocatalysts. Nano Res. 2022, 15, 1730–1752.
Xie, H.; Chen, S. Q.; Liang, J. S.; Wang, T. Y.; Hou, Z. F.; Wang, H. L.; Chai, G. L.; Li, Q. Weakening intermediate bindings on CuPd/Pd core/shell nanoparticles to achieve Pt-like bifunctional activity for hydrogen evolution and oxygen reduction reactions. Adv. Funct. Mater. 2021, 31, 2100883.
Zhang, K. W.; Wang, C.; You, H. M.; Zou, B.; Guo, S. Y.; Li, S. J.; Du, Y. K. Advanced plasmon-driven ethylene glycol oxidation over 3D ultrathin lotus-like PdCu nanosheets. Chem. Eng. J. 2022, 438, 135666.
Chen, Y. J.; Pei, J. J.; Chen, Z.; Li, A.; Ji, S. F.; Rong, H. P.; Xu, Q.; Wang, T.; Zhang, A. J.; Tang, H. L. et al. Pt atomic layers with tensile strain and rich defects boost ethanol electrooxidation. Nano Lett. 2022, 22, 7563–7571.
Qiu, Y. J.; Zhang, J.; Jin, J.; Sun, J. Q.; Tang, H. L.; Chen, Q. Q.; Zhang, Z. D.; Sun, W. M.; Meng, G.; Xu, Q. et al. Construction of Pd-Zn dual sites to enhance the performance for ethanol electro-oxidation reaction. Nat. Commun. 2021, 12, 5273.
Huang, W. J.; Kang, X. L.; Xu, C.; Zhou, J. H.; Deng, J.; Li, Y. G.; Cheng, S. 2D PdAg alloy nanodendrites for enhanced ethanol electroxidation. Adv. Mater. 2018, 30, 1706962.
Fan, J. C.; Yu, S. S.; Qi, K.; Liu, C.; Zhang, L.; Zhang, H. Y.; Cui, X. Q.; Zheng, W. T. Synthesis of ultrathin wrinkle-free PdCu alloy nanosheets for modulating d-band electrons for efficient methanol oxidation. J. Mater. Chem. A 2018, 6, 8531–8536.
Zhai, Y. L.; Zhu, Z. J.; Hong, W.; Dong, S. J. A facile strategy to PdCu bimetallic alloy nanosponges with highly porous features as a high-performance electrocatalytic activity for ethanol electrooxidation in an alkaline Medium. Electroanalysis 2015, 27, 1871–1875.
Fan, A. X.; Qin, C. L.; Zhao, R. X.; Sun, H. X.; Sun, H.; Dai, X. P.; Ye, J. Y.; Sun, S. G.; Lu, Y. H.; Zhang, X. Phosphorus-doping-tuned PtNi concave nanocubes with high-index facets for enhanced methanol oxidation reaction. Nano Res. 2022, 15, 6961–6968.
Iwasita, T. Electrocatalysis of methanol oxidation. Electrochim. Acta 2002, 47, 3663–3674.
Lv, H.; Lopes, A.; Xu, D. D.; Liu, B. Multimetallic hollow mesoporous nanospheres with synergistically structural and compositional effects for highly efficient ethanol electrooxidation. ACS Cent. Sci. 2018, 4, 1412–1419.
Wang, Y.; Wang, G. W.; Li, G. W.; Huang, B.; Pan, J.; Liu, Q.; Han, J. J.; Xiao, L.; Lu, J. T.; Zhuang, L. Pt-Ru catalyzed hydrogen oxidation in alkaline media: Oxophilic effect or electronic effect. Energy Environ. Sci. 2015, 8, 177–181.
Yan, Y. C.; Du, J. S.; Gilroy, K. D.; Yang, D. R.; Xia, Y. N.; Zhang, H. Intermetallic nanocrystals: Syntheses and catalytic applications. Adv. Mater. 2017, 29, 1605997.
Lv, H.; Sun, L. Z.; Xu, D. D.; Ma, Y. H.; Liu, B. When ternary PdCuP alloys meet ultrathin nanowires: Synergic boosting of catalytic performance in ethanol electrooxidation. Appl. Catal. B 2019, 253, 271–277.
Yang, N. L.; Zhang, Z. C.; Chen, B.; Huang, Y.; Chen, J. Z.; Lai, Z. C.; Chen, Y.; Sindoro, M.; Wang, A. L.; Cheng, H. F. et al. Synthesis of ultrathin PdCu alloy nanosheets used as a highly efficient electrocatalyst for formic acid oxidation. Adv. Mater. 2017, 29, 1700769.
Zhao, X. J.; Dai, L.; Qin, Q.; Pei, F.; Hu, C. Y.; Zheng, N. F. Self-supported 3D PdCu alloy nanosheets as a bifunctional catalyst for electrochemical reforming of ethanol. Small 2017, 13, 1602970.
Tran, N. T.; Liao, H. B.; Feng, X. L.; Xu, Z. Z.; Liedberg, B. Synthesis of highly branched hollow trimetallic PdAgCu nanoparticles. Nanotechnology 2020, 31, 185601.
Li, Y.; Yan, Y. C.; Li, Y. H.; Zhang, H.; Li, D. S.; Yang, D. R. Size-controlled synthesis of Pd nanosheets for tunable plasmonic properties. CrystEngComm 2015, 17, 1833–1838.
Jin, M. S.; Liu, H. Y.; Zhang, H.; Xie, Z. X.; Liu, J. Y.; Xia, Y. N. Synthesis of Pd nanocrystals enclosed by {100} facets and with sizes < 10 nm for application in CO oxidation. Nano Res. 2011, 4, 83–91.
Zhao, Z. P.; Huang, X. Q.; Li, M. F.; Wang, G. M.; Lee, C.; Zhu, E. B.; Duan, X. F.; Huang, Y. Synthesis of stable shape-controlled catalytically active β-palladium hydride. J. Am. Chem. Soc. 2015, 137, 15672–15675.
Yan, Y. C.; Shan, H.; Li, G.; Xiao, F.; Jiang, Y. Y.; Yan, Y. Y.; Jin, C. H.; Zhang, H.; Wu, J. B.; Yang, D. R. Epitaxial growth of multimetallic Pd@PtM (M = Ni, Rh, Ru) core–shell nanoplates realized by in situ-produced co from interfacial catalytic reactions. Nano Lett. 2016, 16, 7999–8004.
Chen, C. H.; Qian, N. K.; Li, J. J.; Li, X.; Yang, D. R.; Zhang, H. Facile synthesis of PdCuRu porous nanoplates as highly efficient electrocatalysts for hydrogen evolution reaction in alkaline medium. Metals 2021, 11, 1451.
Hu, S. Z.; Scudiero, L.; Ha, S. Electronic effect on oxidation of formic acid on supported Pd-Cu bimetallic surface. Electrochim. Acta 2012, 83, 354–358.
Chen, D.; Xu, L. L.; Liu, H.; Yang, J. Rough-surfaced bimetallic copper-palladium alloy multicubes as highly bifunctional electrocatalysts for formic acid oxidation and oxygen reduction. Green Energy Environ. 2019, 4, 254–263.
Ren, M. J.; Zhou, Y.; Tao, F. F.; Zou, Z. Q.; Akins, D. L.; Yang, H. Controllable modification of the electronic structure of carbon-supported core–shell Cu@Pd catalysts for formic acid oxidation. J. Phys. Chem. C 2014, 118, 12669–12675.
Xiao, W. P.; Zhu, J.; Han, L. L.; Liu, S. F.; Wang, J.; Wu, Z. X.; Lei, W.; Xuan, C. J.; Xin, H. L.; Wang, D. L. Pt skin on Pd-Co-Zn/C ternary nanoparticles with enhanced Pt efficiency toward ORR. Nanoscale 2016, 8, 14793–14802.
Jin, L. J.; Xu, H.; Chen, C. Y.; Shang, H. Y.; Wang, Y.; Wang, C.; Du, Y. K. Three-dimensional PdCuM (M = Ru, Rh, Ir) trimetallic alloy nanosheets for enhancing methanol oxidation electrocatalysis. ACS Appl. Mater. Interfaces 2019, 11, 42123–42130.
Gao, F.; Zhang, Y. P.; Ren, F. F.; Shiraishi, Y.; Du, Y. K. Universal surfactant-free strategy for self-standing 3D tremella-like Pd-M (M = Ag, Pb, and Au) nanosheets for superior alcohols electrocatalysis. Adv. Funct. Mater. 2020, 30, 2000255.
Wang, C. Y.; Chen, D. P.; Sang, X. H.; Unocic, R. R.; Skrabalak, S. E. Size-dependent disorder-order transformation in the synthesis of monodisperse intermetallic PdCu nanocatalysts. ACS Nano 2016, 10, 6345–6353.