Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Although research interest in aqueous metal-sulfur batteries (AMSs) has surged due to their intrinsic low cost and high capacity, the practical application of AMSs remains a considerable challenge because of the restrictive cycling stability. To circumvent this issue, we propose an innovative and simple pre-copper strategy to realize a high-durability aqueous Cu-S battery. The pre-copper strategy can effectively promote a stable metal dissolution/deposition, compensate for charge carriers, and facilitate reaction kinetics during the subsequent process. As a result, the aqueous Cu-S battery when coupled with S-decorated porous Ti3C2 (S-d-Ti3C2) exhibits excellent electrochemical performance, delivering a highly reversible capacity of 1805.4 mAh·g−1 in the initial cycle at 0.8 A·g−1, impressive cycling stability with 90.2% capacity retention over 800 cycles, and ultralow polarization ~ 0.08 V even at a high current density of 3.1 A·g−1. The findings obtained in this work could pave the way for the design of high-performance sulfur-based aqueous batteries, which fill the vacancy of the necessary metal anode, delivering merits in both cost and cycle life.
Chu, S.; Majumdar, A. Opportunities and challenges for a sustainable energy future. Nature 2012, 488, 294–303.
Xiang, F. W.; Cheng, F.; Sun, Y. J.; Yang, X. P.; Lu, W.; Amal, R.; Dai, L. M. Recent advances in flexible batteries: From materials to applications. Nano Res. 2023, 16, 4821–4854.
Yang, H. L.; Zhang, B. W.; Wang, Y. X.; Konstantinov, K.; Liu, H. K.; Dou, S. X. Alkali-metal sulfide as cathodes toward safe and high-capacity metal (M = Li, Na, K) sulfur batteries. Adv. Energy Mater. 2020, 10, 2001764.
Tian, W. Z.; Xi, B. J.; Gu, Y.; Fu, Q.; Feng, Z. Y.; Feng, J. K.; Xiong, S. L. Bonding VSe2 ultrafine nanocrystals on graphene toward advanced lithium-sulfur batteries. Nano Res. 2020, 13, 2673–2682.
Bai, C.; Jin, H. J.; Gong, Z. S.; Liu, X. Z.; Yuan, Z. H. A high-power aqueous rechargeable Fe-I2 battery. Energy Storage Mater. 2020, 28, 247–254.
Yan, H. H.; Yang, Z. W.; Xu, C. W.; Li, J.; Liu, Y. W.; Zheng, R. T.; Yu, H. X.; Zhang, L. Y.; Shu, J. Controllable C-N site assisting observable potential difference for homogeneous copper deposition in aqueous Cu-S batteries. Energy Storage Mater. 2022, 48, 74–81.
Xu, C. W.; Yang, Z. W.; Yan, H. H.; Li, J.; Yu, H. X.; Zhang, L. Y.; Shu, J. Synergistic dual conversion reactions assisting Pb-S electrochemistry for energy storage. Proc. Natl. Acad. Sci. USA 2022, 119, e2118675119.
Wu, X. Y.; Markir, A.; Ma, L.; Xu, Y. K.; Jiang, H.; Leonard, D. P.; Shin, W.; Wu, T. P.; Lu, J.; Ji, X. L. A four-electron sulfur electrode hosting a Cu2+/Cu+ redox charge carrier. Angew. Chem., Int. Ed. 2019, 58, 12640–12645.
Li, W.; Wang, K. L.; Jiang, K. A low cost aqueous Zn-S battery realizing ultrahigh energy density. Adv. Sci. 2020, 7, 2000761.
Xiao, C.; Miao, Z. H.; Yang, Z. W.; Yu, H. X.; Yan, L.; Zhang, L. Y.; Shu, J. Building a robust sulfur host for aqueous Cu-S battery by introducing nitrogen into carbon nanotubes. Scr. Mater. 2022, 221, 114975.
Yao, Y.; Chen, M. L.; Xu, R.; Zeng, S. F.; Yang, H.; Ye, S. F.; Liu, F. F.; Wu, X. J.; Yu, Y. CNT interwoven nitrogen and oxygen dual-doped porous carbon nanosheets as free-standing electrodes for high-performance Na-Se and K-Se flexible batteries. Adv. Mater. 2018, 30, 1805234.
Chai, S. B.; Zhu, J. H.; Jiang, J.; Li, C. M. Elevating kinetics of passivated Fe anodes with NH4Cl regulator: Toward low-cost, long-cyclic and green cathode-free Fe-ion aqueous batteries. Nano Res. 2022, 15, 3187–3194.
Demir-Cakan, R.; Morcrette, M.; Tarascon, J. M. Use of ion-selective polymer membranes for an aqueous electrolyte rechargeable Li-ion-polysulphide battery. J. Mater. Chem. A 2015, 3, 2869–2875.
Li, N.; Weng, Z.; Wang, Y. R.; Li, F.; Cheng, H. M.; Zhou, H. S. An aqueous dissolved polysulfide cathode for lithium-sulfur batteries. Energy Environ. Sci. 2014, 7, 3307–3312.
Gross, M. M.; Manthiram, A. Rechargeable zinc-aqueous polysulfide battery with a mediator-ion solid electrolyte. ACS Appl. Mater. Interfaces 2018, 10, 10612–10617.
Gross, M. M.; Manthiram, A. Development of low-cost sodium-aqueous polysulfide hybrid batteries. Energy Storage Mater. 2019, 19, 346–351.
Chao, D. L.; Zhou, W. H.; Xie, F. X.; Ye, C.; Li, H.; Jaroniec, M.; Qiao, S. Z. Roadmap for advanced aqueous batteries: From design of materials to applications. Sci. Adv. 2020, 6, eaba4098.
Tian, R.; Duan, H. N.; Guo, Y. P.; Li, H.; Liu, H. Z. High-Coulombic-efficiency carbon/Li clusters composite anode without precycling or prelithiation. Small 2018, 14, 1802226.
Jin, L. M.; Shen, C.; Shellikeri, A.; Wu, Q.; Zheng, J. S.; Andrei, P.; Zhang, J. G.; Zheng, J. P. Progress and perspectives on pre-lithiation technologies for lithium ion capacitors. Energy Environ. Sci. 2020, 13, 2341–2362.
Dewar, D.; Glushenkov, A. M. Optimisation of sodium-based energy storage cells using pre-sodiation: A perspective on the emerging field. Energy Environ. Sci. 2021, 14, 1380–1401.
Arnaiz, M.; Ajuria, J. Pre-lithiation strategies for lithium ion capacitors: Past, present, and future. Batteries Supercaps 2021, 4, 733–748.
Ge, P.; Hou, H. S.; Cao, X. Y.; Li, S. J.; Zhao, G. G.; Guo, T. X.; Wang, C.; Ji, X. B. Multidimensional evolution of carbon structures underpinned by temperature-induced intermediate of chloride for sodium-ion batteries. Adv. Sci. 2018, 5, 1800080.
Guo, Q. B.; Li, S.; Liu, X. J.; Lu, H. C.; Chang, X. Q.; Zhang, H. S.; Zhu, X. H.; Xia, Q. Y.; Yan, C. L.; Xia, H. Ultrastable sodium-sulfur batteries without polysulfides formation using slit ultramicropore carbon carrier. Adv. Sci. 2020, 7, 1903246.
Lutz, L.; Dachraoui, W.; Demortière, A.; Johnson, L. R.; Bruce, P. G.; Grimaud, A.; Tarascon, J. M. Operando monitoring of the solution-mediated discharge and charge processes in a Na-O2 battery using liquid-electrochemical transmission electron microscopy. Nano Lett. 2018, 18, 1280–1289.
Jeżowski, P.; Fic, K.; Crosnier, O.; Brousse, T.; Béguin, F. Lithium rhenium(VII) oxide as a novel material for graphite pre-lithiation in high performance lithium-ion capacitors. J. Mater. Chem. A 2016, 4, 12609–12615.
Huang, G. X.; Liang, J. N.; Zhong, X. G.; Liang, H. Y.; Cui, C.; Zeng, C.; Wang, S. H.; Liao, M. Y.; Shen, Y.; Zhai, T. Y. et al. Boosting the capability of Li2C2O4 as cathode pre-lithiation additive for lithium-ion batteries. Nano Res. 2023, 16, 3872–3878.
Cai, P.; Zou, K. Y.; Deng, X. L.; Wang, B. W.; Zheng, M.; Li, L. H.; Hou, H. S.; Zou, G. Q.; Ji, X. B. Comprehensive understanding of sodium-ion capacitors: Definition, mechanisms, configurations, materials, key technologies, and future developments. Adv. Energy Mater. 2021, 11, 2003804.
Meng, Q. H.; Li, G.; Yue, J. P.; Xu, Q.; Yin, Y. X.; Guo, Y. G. High-performance lithiated SiOx anode obtained by a controllable and efficient prelithiation strategy. ACS Appl. Mater. Interfaces 2019, 11, 32062–32068.
Zhao, J.; Qi, Y. R.; Yang, Q. J.; Huang, T.; Wang, H.; Wang, Y. Y.; Niu, Y. B.; Liu, Y. J.; Bao, S. J.; Xu, M. W. Chessboard structured electrode design for Li-S batteries based on MXene nanosheets. Chem. Eng. J. 2022, 429, 131997.
Wang, C. H.; Chen, H. W.; Dong, W. L.; Ge, J.; Lu, W.; Wu, X. D.; Guo, L.; Chen, L. W. Sulfur-amine chemistry-based synthesis of multi-walled carbon nanotube-sulfur composites for high performance Li-S batteries. Chem. Commun. 2014, 50, 1202–1204.
Xiong, C.; Zhu, G. Y.; Jiang, H. R.; Chen, Q.; Zhao, T. S. Achieving multiplexed functionality in a hierarchical MXene-based sulfur host for high-rate, high-loading lithium-sulfur batteries. Energy Storage Mater. 2020, 33, 147–157.
Wei, C. L.; Wang, Y. S.; Zhang, Y. C.; Tan, L. W.; Qian, Y.; Tao, Y.; Xiong, S. L.; Feng, J. K. Flexible and stable 3D lithium metal anodes based on self-standing MXene/COF frameworks for high-performance lithium-sulfur batteries. Nano Res. 2021, 14, 3576–3584.
Halim, J.; Cook, K. M.; Naguib, M.; Eklund, P.; Gogotsi, Y.; Rosen, J.; Barsoum, M. W. X-ray photoelectron spectroscopy of select multi-layered transition metal carbides (MXenes). Appl. Surf. Sci. 2016, 362, 406–417.
Bao, W. Z.; Liu, L.; Wang, C. Y.; Choi, S.; Wang, D.; Wang, G. X. Facile synthesis of crumpled nitrogen-doped MXene nanosheets as a new sulfur host for lithium-sulfur batteries. Adv. Energy Mater. 2018, 8, 1702485.
Luo, J. M.; Zheng, J. H.; Nai, J. W.; Jin, C. B.; Yuan, H. D.; Sheng, O. W.; Liu, Y. J.; Fang, R. Y.; Zhang, W. K.; Huang, H. et al. Atomic sulfur covalently engineered interlayers of Ti3C2 MXene for ultra-fast sodium-ion storage by enhanced pseudocapacitance. Adv. Funct. Mater. 2019, 29, 1808107.
Fleet, M. E.; Harmer, S. L.; Liu, X.; Nesbitt, H. W. Polarized X-ray absorption spectroscopy and XPS of TiS3: S K- and Ti L-edge XANES and S and Ti 2p XPS. Surf. Sci. 2005, 584, 133–145.
Wu, X. Y.; Markir, A.; Xu, Y. K.; Hu, E. C.; Dai, K. T.; Zhang, C.; Shin, W.; Leonard, D. P.; Kim, K. I.; Ji, X. L. Rechargeable iron-sulfur battery without polysulfide shuttling. Adv. Energy Mater. 2019, 9, 1902422.
Yang, Z. W.; Xu, C. W.; Yan, H. H.; Liu, Y. W.; Yue, C.; Zhang, L. Y.; Shui, M.; Hu, F.; Shu, J. Laser-induced graphene assisting self-conversion reaction for sulfur-free aqueous Cu-S battery. Adv. Funct. Mater. 2021, 31, 2103893.
Yang, Z. W.; Xu, C. W.; Xia, M. T.; Zhang, X. K.; Yan, H. H.; Yu, H. X.; Sun, T. J.; Zhang, L. Y.; Hu, F.; Shu, J. Thermodynamic analysis and perspective of aqueous metal-sulfur batteries. Mater. Today 2021, 49, 184–200.
Zhong, W.; Tao, M. L.; Tang, W. W.; Gao, W.; Yang, T. T.; Zhang, Y. Q.; Zhan, R. M.; Bao, S. J.; Xu, M. W. MXene-derivative pompon-like Na2Ti3O7@C anode material for advanced sodium ion batteries. Chem. Eng. J. 2019, 378, 122209.