AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

A high-durability aqueous Cu-S battery assisted by pre-copper electrochemistry

Jing Zhao1,2Yuruo Qi1,2( )Tian Huang3Yi Zhang1,2Peipei Zhi1,2Shujuan Bao1,2Maowen Xu1,2 ( )
School of Materials and Energy, Southwest University, Chongqing 400715, China
Chongqing Key Lab for Advanced Materials and Clean Energies of Technologies, Southwest University, Chongqing 400715, China
Chongqing Municipal Engineering Research Center of Institutions of Higher Education for Special Welding Materials and Technology, Chongqing University of technology, Chongqing 400054, China
Show Author Information

Graphical Abstract

The pre-copper strategy can effectively promote a stable metal dissolution/deposition, compensate for charge carriers, and facilitate reaction kinetics during the subsequent process, which provides possibilities for the development of high-performance, low-cost, and high-safety aqueous metal-sulfur batteries.

Abstract

Although research interest in aqueous metal-sulfur batteries (AMSs) has surged due to their intrinsic low cost and high capacity, the practical application of AMSs remains a considerable challenge because of the restrictive cycling stability. To circumvent this issue, we propose an innovative and simple pre-copper strategy to realize a high-durability aqueous Cu-S battery. The pre-copper strategy can effectively promote a stable metal dissolution/deposition, compensate for charge carriers, and facilitate reaction kinetics during the subsequent process. As a result, the aqueous Cu-S battery when coupled with S-decorated porous Ti3C2 (S-d-Ti3C2) exhibits excellent electrochemical performance, delivering a highly reversible capacity of 1805.4 mAh·g−1 in the initial cycle at 0.8 A·g−1, impressive cycling stability with 90.2% capacity retention over 800 cycles, and ultralow polarization ~ 0.08 V even at a high current density of 3.1 A·g−1. The findings obtained in this work could pave the way for the design of high-performance sulfur-based aqueous batteries, which fill the vacancy of the necessary metal anode, delivering merits in both cost and cycle life.

Electronic Supplementary Material

Download File(s)
12274_2023_5747_MOESM1_ESM.pdf (3.9 MB)

References

[1]

Chu, S.; Majumdar, A. Opportunities and challenges for a sustainable energy future. Nature 2012, 488, 294–303.

[2]

Xiang, F. W.; Cheng, F.; Sun, Y. J.; Yang, X. P.; Lu, W.; Amal, R.; Dai, L. M. Recent advances in flexible batteries: From materials to applications. Nano Res. 2023, 16, 4821–4854.

[3]

Yang, H. L.; Zhang, B. W.; Wang, Y. X.; Konstantinov, K.; Liu, H. K.; Dou, S. X. Alkali-metal sulfide as cathodes toward safe and high-capacity metal (M = Li, Na, K) sulfur batteries. Adv. Energy Mater. 2020, 10, 2001764.

[4]

Tian, W. Z.; Xi, B. J.; Gu, Y.; Fu, Q.; Feng, Z. Y.; Feng, J. K.; Xiong, S. L. Bonding VSe2 ultrafine nanocrystals on graphene toward advanced lithium-sulfur batteries. Nano Res. 2020, 13, 2673–2682.

[5]

Bai, C.; Jin, H. J.; Gong, Z. S.; Liu, X. Z.; Yuan, Z. H. A high-power aqueous rechargeable Fe-I2 battery. Energy Storage Mater. 2020, 28, 247–254.

[6]

Yan, H. H.; Yang, Z. W.; Xu, C. W.; Li, J.; Liu, Y. W.; Zheng, R. T.; Yu, H. X.; Zhang, L. Y.; Shu, J. Controllable C-N site assisting observable potential difference for homogeneous copper deposition in aqueous Cu-S batteries. Energy Storage Mater. 2022, 48, 74–81.

[7]

Xu, C. W.; Yang, Z. W.; Yan, H. H.; Li, J.; Yu, H. X.; Zhang, L. Y.; Shu, J. Synergistic dual conversion reactions assisting Pb-S electrochemistry for energy storage. Proc. Natl. Acad. Sci. USA 2022, 119, e2118675119.

[8]

Wu, X. Y.; Markir, A.; Ma, L.; Xu, Y. K.; Jiang, H.; Leonard, D. P.; Shin, W.; Wu, T. P.; Lu, J.; Ji, X. L. A four-electron sulfur electrode hosting a Cu2+/Cu+ redox charge carrier. Angew. Chem., Int. Ed. 2019, 58, 12640–12645.

[9]

Li, W.; Wang, K. L.; Jiang, K. A low cost aqueous Zn-S battery realizing ultrahigh energy density. Adv. Sci. 2020, 7, 2000761.

[10]

Xiao, C.; Miao, Z. H.; Yang, Z. W.; Yu, H. X.; Yan, L.; Zhang, L. Y.; Shu, J. Building a robust sulfur host for aqueous Cu-S battery by introducing nitrogen into carbon nanotubes. Scr. Mater. 2022, 221, 114975.

[11]

Yao, Y.; Chen, M. L.; Xu, R.; Zeng, S. F.; Yang, H.; Ye, S. F.; Liu, F. F.; Wu, X. J.; Yu, Y. CNT interwoven nitrogen and oxygen dual-doped porous carbon nanosheets as free-standing electrodes for high-performance Na-Se and K-Se flexible batteries. Adv. Mater. 2018, 30, 1805234.

[12]

Chai, S. B.; Zhu, J. H.; Jiang, J.; Li, C. M. Elevating kinetics of passivated Fe anodes with NH4Cl regulator: Toward low-cost, long-cyclic and green cathode-free Fe-ion aqueous batteries. Nano Res. 2022, 15, 3187–3194.

[13]

Demir-Cakan, R.; Morcrette, M.; Tarascon, J. M. Use of ion-selective polymer membranes for an aqueous electrolyte rechargeable Li-ion-polysulphide battery. J. Mater. Chem. A 2015, 3, 2869–2875.

[14]

Li, N.; Weng, Z.; Wang, Y. R.; Li, F.; Cheng, H. M.; Zhou, H. S. An aqueous dissolved polysulfide cathode for lithium-sulfur batteries. Energy Environ. Sci. 2014, 7, 3307–3312.

[15]

Gross, M. M.; Manthiram, A. Rechargeable zinc-aqueous polysulfide battery with a mediator-ion solid electrolyte. ACS Appl. Mater. Interfaces 2018, 10, 10612–10617.

[16]

Gross, M. M.; Manthiram, A. Development of low-cost sodium-aqueous polysulfide hybrid batteries. Energy Storage Mater. 2019, 19, 346–351.

[17]

Chao, D. L.; Zhou, W. H.; Xie, F. X.; Ye, C.; Li, H.; Jaroniec, M.; Qiao, S. Z. Roadmap for advanced aqueous batteries: From design of materials to applications. Sci. Adv. 2020, 6, eaba4098.

[18]

Tian, R.; Duan, H. N.; Guo, Y. P.; Li, H.; Liu, H. Z. High-Coulombic-efficiency carbon/Li clusters composite anode without precycling or prelithiation. Small 2018, 14, 1802226.

[19]

Jin, L. M.; Shen, C.; Shellikeri, A.; Wu, Q.; Zheng, J. S.; Andrei, P.; Zhang, J. G.; Zheng, J. P. Progress and perspectives on pre-lithiation technologies for lithium ion capacitors. Energy Environ. Sci. 2020, 13, 2341–2362.

[20]

Dewar, D.; Glushenkov, A. M. Optimisation of sodium-based energy storage cells using pre-sodiation: A perspective on the emerging field. Energy Environ. Sci. 2021, 14, 1380–1401.

[21]

Arnaiz, M.; Ajuria, J. Pre-lithiation strategies for lithium ion capacitors: Past, present, and future. Batteries Supercaps 2021, 4, 733–748.

[22]

Ge, P.; Hou, H. S.; Cao, X. Y.; Li, S. J.; Zhao, G. G.; Guo, T. X.; Wang, C.; Ji, X. B. Multidimensional evolution of carbon structures underpinned by temperature-induced intermediate of chloride for sodium-ion batteries. Adv. Sci. 2018, 5, 1800080.

[23]

Guo, Q. B.; Li, S.; Liu, X. J.; Lu, H. C.; Chang, X. Q.; Zhang, H. S.; Zhu, X. H.; Xia, Q. Y.; Yan, C. L.; Xia, H. Ultrastable sodium-sulfur batteries without polysulfides formation using slit ultramicropore carbon carrier. Adv. Sci. 2020, 7, 1903246.

[24]

Lutz, L.; Dachraoui, W.; Demortière, A.; Johnson, L. R.; Bruce, P. G.; Grimaud, A.; Tarascon, J. M. Operando monitoring of the solution-mediated discharge and charge processes in a Na-O2 battery using liquid-electrochemical transmission electron microscopy. Nano Lett. 2018, 18, 1280–1289.

[25]

Jeżowski, P.; Fic, K.; Crosnier, O.; Brousse, T.; Béguin, F. Lithium rhenium(VII) oxide as a novel material for graphite pre-lithiation in high performance lithium-ion capacitors. J. Mater. Chem. A 2016, 4, 12609–12615.

[26]

Huang, G. X.; Liang, J. N.; Zhong, X. G.; Liang, H. Y.; Cui, C.; Zeng, C.; Wang, S. H.; Liao, M. Y.; Shen, Y.; Zhai, T. Y. et al. Boosting the capability of Li2C2O4 as cathode pre-lithiation additive for lithium-ion batteries. Nano Res. 2023, 16, 3872–3878.

[27]

Cai, P.; Zou, K. Y.; Deng, X. L.; Wang, B. W.; Zheng, M.; Li, L. H.; Hou, H. S.; Zou, G. Q.; Ji, X. B. Comprehensive understanding of sodium-ion capacitors: Definition, mechanisms, configurations, materials, key technologies, and future developments. Adv. Energy Mater. 2021, 11, 2003804.

[28]

Meng, Q. H.; Li, G.; Yue, J. P.; Xu, Q.; Yin, Y. X.; Guo, Y. G. High-performance lithiated SiOx anode obtained by a controllable and efficient prelithiation strategy. ACS Appl. Mater. Interfaces 2019, 11, 32062–32068.

[29]

Zhao, J.; Qi, Y. R.; Yang, Q. J.; Huang, T.; Wang, H.; Wang, Y. Y.; Niu, Y. B.; Liu, Y. J.; Bao, S. J.; Xu, M. W. Chessboard structured electrode design for Li-S batteries based on MXene nanosheets. Chem. Eng. J. 2022, 429, 131997.

[30]

Wang, C. H.; Chen, H. W.; Dong, W. L.; Ge, J.; Lu, W.; Wu, X. D.; Guo, L.; Chen, L. W. Sulfur-amine chemistry-based synthesis of multi-walled carbon nanotube-sulfur composites for high performance Li-S batteries. Chem. Commun. 2014, 50, 1202–1204.

[31]

Xiong, C.; Zhu, G. Y.; Jiang, H. R.; Chen, Q.; Zhao, T. S. Achieving multiplexed functionality in a hierarchical MXene-based sulfur host for high-rate, high-loading lithium-sulfur batteries. Energy Storage Mater. 2020, 33, 147–157.

[32]

Wei, C. L.; Wang, Y. S.; Zhang, Y. C.; Tan, L. W.; Qian, Y.; Tao, Y.; Xiong, S. L.; Feng, J. K. Flexible and stable 3D lithium metal anodes based on self-standing MXene/COF frameworks for high-performance lithium-sulfur batteries. Nano Res. 2021, 14, 3576–3584.

[33]

Halim, J.; Cook, K. M.; Naguib, M.; Eklund, P.; Gogotsi, Y.; Rosen, J.; Barsoum, M. W. X-ray photoelectron spectroscopy of select multi-layered transition metal carbides (MXenes). Appl. Surf. Sci. 2016, 362, 406–417.

[34]

Bao, W. Z.; Liu, L.; Wang, C. Y.; Choi, S.; Wang, D.; Wang, G. X. Facile synthesis of crumpled nitrogen-doped MXene nanosheets as a new sulfur host for lithium-sulfur batteries. Adv. Energy Mater. 2018, 8, 1702485.

[35]

Luo, J. M.; Zheng, J. H.; Nai, J. W.; Jin, C. B.; Yuan, H. D.; Sheng, O. W.; Liu, Y. J.; Fang, R. Y.; Zhang, W. K.; Huang, H. et al. Atomic sulfur covalently engineered interlayers of Ti3C2 MXene for ultra-fast sodium-ion storage by enhanced pseudocapacitance. Adv. Funct. Mater. 2019, 29, 1808107.

[36]

Fleet, M. E.; Harmer, S. L.; Liu, X.; Nesbitt, H. W. Polarized X-ray absorption spectroscopy and XPS of TiS3: S K- and Ti L-edge XANES and S and Ti 2p XPS. Surf. Sci. 2005, 584, 133–145.

[37]

Wu, X. Y.; Markir, A.; Xu, Y. K.; Hu, E. C.; Dai, K. T.; Zhang, C.; Shin, W.; Leonard, D. P.; Kim, K. I.; Ji, X. L. Rechargeable iron-sulfur battery without polysulfide shuttling. Adv. Energy Mater. 2019, 9, 1902422.

[38]

Yang, Z. W.; Xu, C. W.; Yan, H. H.; Liu, Y. W.; Yue, C.; Zhang, L. Y.; Shui, M.; Hu, F.; Shu, J. Laser-induced graphene assisting self-conversion reaction for sulfur-free aqueous Cu-S battery. Adv. Funct. Mater. 2021, 31, 2103893.

[39]

Yang, Z. W.; Xu, C. W.; Xia, M. T.; Zhang, X. K.; Yan, H. H.; Yu, H. X.; Sun, T. J.; Zhang, L. Y.; Hu, F.; Shu, J. Thermodynamic analysis and perspective of aqueous metal-sulfur batteries. Mater. Today 2021, 49, 184–200.

[40]

Zhong, W.; Tao, M. L.; Tang, W. W.; Gao, W.; Yang, T. T.; Zhang, Y. Q.; Zhan, R. M.; Bao, S. J.; Xu, M. W. MXene-derivative pompon-like Na2Ti3O7@C anode material for advanced sodium ion batteries. Chem. Eng. J. 2019, 378, 122209.

Nano Research
Pages 9553-9560
Cite this article:
Zhao J, Qi Y, Huang T, et al. A high-durability aqueous Cu-S battery assisted by pre-copper electrochemistry. Nano Research, 2023, 16(7): 9553-9560. https://doi.org/10.1007/s12274-023-5747-2
Topics:

891

Views

5

Crossref

3

Web of Science

3

Scopus

0

CSCD

Altmetrics

Received: 03 February 2023
Revised: 05 April 2023
Accepted: 16 April 2023
Published: 25 May 2023
© Tsinghua University Press 2023
Return