AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Optimizing geometric configuration of single Zn-N4 sites for boosting reciprocal transformation between aromatic alcohols and aldehydes

Shengjie Wei1,2,§( )Yucheng Jin3,§Chunlin Lv4( )Chao Lian5Zheng Chen6Xiao Liang2Qinghua Zhang7Xin Chen8Dongdong Qi3Zhi Li9
School of Materials Science and Engineering, Nankai University, Tianjin 300350, China
Department of Chemistry, Tsinghua University, Beijing 100084, China
Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry, University of Science and Technology Beijing, Beijing 100083, China
School of Pharmacy and Center on Translational Neuroscience, Minzu University of China, Beijing 100081, China
Department of Chemistry, School of Science, Beijing Jiaotong University, Beijing 100091, China
School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing 100083, China
College of Chemistry, Beijing Normal University, Beijing 100875, China

§ Shengjie Wei and Yucheng Jin contributed equally to this work.

Show Author Information

Graphical Abstract

The structural evolution from tetrahedral Zn-N4 sites of zeolite imidazole framework-8 (ZIF-8) into planar Zn-N4 sites of Zn-CN-900 boosts the catalytic activity for reciprocal transformation between benzyl alcohol and benzaldehyde by optimizing geometric configuration of single Zn-N4 sites.

Abstract

It is significant to optimize geometric configuration of metal catalytic sites and boost their catalytic activity. Herein, we synthesized isolated single Zn-N4 sites on N-doped carbon (Zn-CN) by pyrolyzing zeolite imidazole framework-8 (ZIF-8) at different temperatures. For the reciprocal transformation between benzyl alcohol and benzaldehyde, the catalytic activities of Zn-CN catalysts exhibited a volcano-like trend as the pyrolysis temperatures increased. The optimal catalyst was Zn-CN-900, with outstanding catalytic activity exceeding commercial 20 wt.% Pd/C and 20 wt.% Pt/C, promising to substitute the noble metal-based catalysts. X-ray absorption near-edge structure (XANES) measurements and density functional theory (DFT) calculation revealed the gradual transformation from tetrahedral ZnN4 sites of ZIF-8 into planar ZnN4 sites above 700 °C, with the maximum planar ZnN4 sites in Zn-CN-900. The stronger adsorption between reactants and planar ZnN4 sites facilitated the activation of reactants compared with tetrahedral ZnN4 sites. This work will provide valuable insight into rational design of efficient catalysts by optimizing geometric configuration of catalytic sites.

Electronic Supplementary Material

Download File(s)
12274_2023_5748_MOESM1_ESM.pdf (26.5 MB)

References

[1]

Sheldon, R. A.; Arends, I. W. C. E.; Ten Brink, G. J.; Dijksman. A. Green, catalytic oxidations of alcohols. Acc. Chem. Res. 2002, 35, 774–781.

[2]

Enache, D. I.; Edwards, J. K.; Landon, P.; Solsona-Espriu, B.; Carley, A. F.; Herzing, A. A.; Watanabe, M.; Kiely, C. J.; Knight, D. W.; Hutchings, G. J. Solvent-free oxidation of primary alcohols to aldehydes using Au-Pd/TiO2 catalysts. Science 2006, 311, 362–365.

[3]

Ji, S. F.; Chen, Y. J.; Zhang, Z. D.; Cheong, W. C.; Liu, Z. R.; Wang, D. S.; Li, Y. D. Single-atomic-site cobalt stabilized on nitrogen and phosphorus co-doped carbon for selective oxidation of primary alcohols. Nanoscale Horiz. 2019, 4, 902–906.

[4]

Bhanushali, J. T.; Kainthla, I.; Keri, R. S.; Nagaraja, B. M. Catalytic hydrogenation of benzaldehyde for selective synthesis of benzyl alcohol: A review. ChemistrySelect 2016, 1, 3839–3853.

[5]

Guo, Z.; Liu, B.; Zhang, Q. H.; Deng, W. P.; Wang, Y.; Yang, Y. H. Recent advances in heterogeneous selective oxidation catalysis for sustainable chemistry. Chem. Soc. Rev. 2014, 43, 3480–3524.

[6]

Pagliaro, M.; Campestrini, S.; Ciriminna, R. Ru-based oxidation catalysis. Chem. Soc. Rev. 2005, 34, 837–845.

[7]

Li, H.; Qin, F.; Yang, Z. P.; Cui, X. M.; Wang, J. F.; Zhang, L. Z. New reaction pathway induced by plasmon for selective benzyl alcohol oxidation on BiOCl possessing oxygen vacancies. J. Am. Chem. Soc. 2017, 139, 3513–3521.

[8]

Leithall, R. M.; Shetti, V. N.; Maurelli, S.; Chiesa, M.; Gianotti, E.; Raja, R. Toward understanding the catalytic synergy in the design of bimetallic molecular sieves for selective aerobic oxidations. J. Am. Chem. Soc. 2013, 135, 2915–2918.

[9]

Tanaka, A.; Hashimoto, K.; Kominami, H. Preparation of Au/CeO2 exhibiting strong surface plasmon resonance effective for selective or chemoselective oxidation of alcohols to aldehydes or ketones in aqueous suspensions under irradiation by green light. J. Am. Chem. Soc. 2012, 134, 14526–14533.

[10]

Xin, P. Y.; Li, J.; Xiong, Y.; Wu, X.; Dong, J. C.; Chen, W. X.; Wang, Y.; Gu, L.; Luo, J.; Rong, H. P. et al. Revealing the active species for aerobic alcohol oxidation by using uniform supported palladium catalysts. Angew. Chem., Int. Ed. 2018, 57, 4642–4646.

[11]

Mori, K.; Hara, T.; Mizugaki, T.; Ebitani, K.; Kaneda, K. Hydroxyapatite-supported palladium nanoclusters: A highly active heterogeneous catalyst for selective oxidation of alcohols by use of molecular oxygen. J. Am. Chem. Soc. 2004, 126, 10657–10666.

[12]

Zhang, S. L.; Han, A. J.; Zhai, Y. L.; Zhang, J.; Cheong, W. C.; Wang, D. S.; Li, Y. D. ZIF-derived porous carbon supported Pd nanoparticles within mesoporous silica shells: Sintering- and leaching-resistant core–shell nanocatalysts. Chem. Commun. 2017, 53, 9490–9493.

[13]

Chen, Y. Z.; Wang, Z. U.; Wang, H. W.; Lu, J. L.; Yu, S. H.; Jiang, H. L. Singlet oxygen-engaged selective photo-oxidation over Pt nanocrystals/porphyrinic MOF: The roles of photothermal effect and Pt electronic state. J. Am. Chem. Soc. 2017, 139, 2035–2044.

[14]

Li, T. B.; Liu, F.; Tang, Y.; Li, L.; Miao, S.; Su, Y.; Zhang, J. Y.; Huang, J. H.; Sun, H.; Haruta, M. et al. Maximizing the number of interfacial sites in single-atom catalysts for the highly selective, solvent-free oxidation of primary alcohols. Angew. Chem., Int. Ed. 2018, 57, 7795–7799.

[15]

Guan, B. T.; Xing, D.; Cai, G. X.; Wan, X. B.; Yu, N.; Fang, Z.; Yang, L. P.; Shi, Z. J. Highly selective aerobic oxidation of alcohol catalyzed by a gold(I) complex with an anionic ligand. J. Am. Chem. Soc. 2005, 127, 18004–18005.

[16]

Ji, S. F.; Chen, Y. J.; Fu, Q.; Chen, Y. F.; Dong, J. C.; Chen, W. X.; Li, Z.; Wang, Y.; Gu, L.; He, W. et al. Confined pyrolysis within metal-organic frameworks to form uniform Ru3 clusters for efficient oxidation of alcohols. J. Am. Chem. Soc. 2017, 139, 9795–9798.

[17]

Dijksman, A.; Marino-González, A.; Mairata i Payeras, A.; Arends, I. W. C. E.; Sheldon, R. A. Efficient and selective aerobic oxidation of alcohols into aldehydes and ketones using ruthenium/TEMPO as the catalytic system. J. Am. Chem. Soc. 2001, 123, 6826–6833.

[18]

Zhan, B. Z.; White, M. A.; Sham, T. K.; Pincock, J. A.; Doucet, R. J.; Rao, K. V. R.; Robertson, K. N.; Cameron, T. S. Zeolite-confined nano-RuO2: A green, selective, and efficient catalyst for aerobic alcohol oxidation. J. Am. Chem. Soc. 2003, 125, 2195–2199.

[19]

Wang, D.; Astruc, D. The golden age of transfer hydrogenation. Chem. Rev. 2015, 115, 6621–6686.

[20]

Tian, S. B.; Wang, Z. Y.; Gong, W. B.; Chen, W. X.; Feng, Q. C.; Xu, Q.; Chen, C.; Chen, C.; Peng, Q.; Gu, L. et al. Temperature-controlled selectivity of hydrogenation and hydrodeoxygenation in the conversion of biomass molecule by the Ru1/mpg-C3N4 catalyst. J. Am. Chem. Soc. 2018, 140, 11161–11164.

[21]

Li, W. H.; Yang, J. R.; Wang, D. S. Long-range interactions in diatomic catalysts boosting electrocatalysis. Angew. Chem., Int. Ed. 2022, 61, e202213318.

[22]

Zhu, P.; Xiong, X.; Wang, D. S. Regulations of active moiety in single atom catalysts for electrochemical hydrogen evolution reaction. Nano Res. 2022, 15, 5792–5815.

[23]

Li, R. Z.; Wang, D. S. Understanding the structure–performance relationship of active sites at atomic scale. Nano Res. 2022, 15, 6888–6923.

[24]

Zheng, X. B.; Li, B. B.; Wang, Q. S.; Wang, D. S.; Li, Y. D. Emerging low-nuclearity supported metal catalysts with atomic level precision for efficient heterogeneous catalysis. Nano Res. 2022, 15, 7806–7839.

[25]

Zhang, Z. D.; Zhu, J. X.; Chen, S. H.; Sun, W. M.; Wang, D. S. Liquid fluxional Ga single atom catalysts for efficient electrochemical CO2 reduction. Angew. Chem., Int. Ed. 2023, 62, e202215136.

[26]

Yang, J. R.; Li, W. H.; Xu, K. N.; Tan, S. D.; Wang, D. S.; Li, Y. D. Regulating the tip effect on single-atom and cluster catalysts: Forming reversible oxygen species with high efficiency in chlorine evolution reaction. Angew. Chem., Int. Ed. 2022, 61, e202200366.

[27]

Jing, H. Y.; Zhu, P.; Zheng, X. B.; Zhang, Z. D.; Wang, D. S.; Li, Y. D. Theory-oriented screening and discovery of advanced energy transformation materials in electrocatalysis. Adv. Powder Mater. 2022, 1, 100013.

[28]

Wang, Q. Y.; Dong, L. Y.; Li, M. Z.; Lu, H. L.; Wei, G. D.; Qu, Y.; Wang, G. F. Z-scheme heterojunction photocatalyst based on lanthanum single-atom anchored on black phosphorus for regulating surface active sites, therefore enhancing photocatalytic CO2 reduction with ≈ 100% CO selectivity. Adv. Funct. Mater. 2022, 32, 2207330.

[29]

Bao, S.; Yu, H. Y.; Gao, G. Y.; Zhu, H. Y.; Wang, D. S.; Zhu, P. F.; Wang, G. F. Rare-earth single atom based luminescent composite nanomaterials: Tunable full-color single phosphor and applications in WLEDs. Nano Res. 2022, 15, 3594–3605.

[30]

Qin, J. Y.; Liu, H.; Zou, P. C.; Zhang, R.; Wang, C. Y.; Xin, H. L. Altering ligand fields in single-atom sites through second-shell anion modulation boosts the oxygen reduction reaction. J. Am. Chem. Soc. 2022, 144, 2197–2207.

[31]

Jin, J.; Han, X.; Fang, Y. Y.; Zhang, Z. D.; Li, Y. P.; Zhang, T. Y.; Han, A. J.; Liu, J. F. Microenvironment engineering of Ru single-atom catalysts by regulating the cation vacancies in NiFe-layered double hydroxides. Adv. Funct. Mater. 2022, 32, 2109218.

[32]

Tiburcio, E.; Greco, R.; Mon, M.; Ballesteros-Soberanas, J.; Ferrando-Soria, J.; López-Haro, M.; Hernández-Garrido, J. C.; Oliver-Meseguer, J.; Marini, C.; Boronat, M. et al. Soluble/MOF-supported palladium single atoms catalyze the ligand-, additive-, and solvent-free aerobic oxidation of benzyl alcohols to benzoic acids. J. Am. Chem. Soc. 2021, 143, 2581–2592.

[33]

Chen, Y. J.; Wang, P. X.; Hao, H. G.; Hong, J. J.; Li, H. J.; Ji, S. F.; Li, A.; Gao, R.; Dong, J. C.; Han, X. D. et al. Thermal atomization of platinum nanoparticles into single atoms: An effective strategy for engineering high-performance nanozymes. J. Am. Chem. Soc. 2021, 143, 18643–18651.

[34]

Shan, J. Q.; Ye, C.; Chen, S. M.; Sun, T. L.; Jiao, Y.; Liu, L. M.; Zhu, C. Z.; Song, L.; Han, Y.; Jaroniec, M. et al. Short-range ordered iridium single atoms integrated into cobalt oxide spinel structure for highly efficient electrocatalytic water oxidation. J. Am. Chem. Soc. 2021, 143, 5201–5211.

[35]

Huang, Q. E.; Wang, B. L.; Ye, S.; Liu, H.; Chi, H. B.; Liu, X. Y.; Fan, H. J.; Li, M. R.; Ding, C. M.; Li, Z. et al. Relation between water oxidation activity and coordination environment of C, N-coordinated mononuclear Co catalyst. ACS Catal. 2022, 12, 491–496.

[36]

Feng, Y. C.; Long, S. S.; Chen, B. L.; Jia, W. L.; Xie, S. J.; Sun, Y.; Tang, X.; Yang, S. L.; Zeng, X. H.; Lin. L. Inducing electron dissipation of pyridinic N enabled by single Ni-N4 sites for the reduction of aldehydes/ketones with ethanol. ACS Catal. 2021, 11, 6398–6405.

[37]

Liang, J. L.; Song, Q. Q.; Wu, J. H.; Lei, Q.; Li, J.; Zhang, W.; Huang, Z. M.; Kang, T. X.; Xu, H.; Wang, P. et al. Anchoring copper single atoms on porous boron nitride nanofiber to boost selective reduction of nitroaromatics. ACS Nano 2022, 16, 4152–4161.

[38]

Liu, J. B.; Wang, D. S.; Huang, K.; Dong, J. C.; Liao, J. W.; Dai, S.; Tang, X.; Yan, M. M.; Gong, H. S.; Liu, J. J. et al. Iodine-doping-induced electronic structure tuning of atomic cobalt for enhanced hydrogen evolution electrocatalysis. ACS Nano 2021, 15, 18125–18134.

[39]

Huang, M.; Deng, B. W.; Zhao, X. L.; Zhang, Z. Y.; Li, F.; Li, K. L.; Cui, Z. H.; Kong, L. X.; Lu, J. M.; Dong, F. et al. Template-sacrificing synthesis of well-defined asymmetrically coordinated single-atom catalysts for highly efficient CO2 electrocatalytic reduction. ACS Nano 2022, 16, 2110–2119.

[40]

Li, Z. J.; Wang, Z. Y.; Xi, S. B.; Zhao, X. X.; Sun, T.; Li, J.; Yu, W.; Xu, H. M.; Herng, T. S.; Hai, X. et al. Tuning the spin density of cobalt single-atom catalysts for efficient oxygen evolution. ACS Nano 2021, 15, 7105–7113.

[41]

Wang, X. Q.; Chen, Z.; Zhao, X. Y.; Yao, T.; Chen, W. X.; You, R.; Zhao, C. M.; Wu, G.; Wang, J.; Huang, W. X. et al. Regulation of coordination number over single co sites: Triggering the efficient electroreduction of CO2. Angew. Chem., Int. Ed. 2018, 57, 1944–1948.

[42]

Shang, H. S.; Zhou, X. Y.; Dong, J. C.; Li, A.; Zhao, X.; Liu, Q. H.; Lin, Y.; Pei, J. J.; Li, Z.; Jiang, Z. L. et al. Engineering unsymmetrically coordinated Cu-S1N3 single atom sites with enhanced oxygen reduction activity. Nat. Commun. 2020, 11, 3049.

[43]

Yuan, K.; Lützenkirchen-Hecht, D.; Li, L. B.; Shuai, L.; Li, Y. Z.; Cao, R.; Qiu, M.; Zhuang, X. D.; Leung, M. K. H.; Chen, Y. W. et al. Boosting oxygen reduction of single iron active sites via geometric and electronic engineering: Nitrogen and phosphorus dual coordination. J. Am. Chem. Soc. 2020, 142, 2404–2412.

[44]

Wang, J.; Li, H. G.; Liu, S. H.; Hu, Y. F.; Zhang, J.; Xia, M. R.; Hou, Y. L.; Tse, J.; Zhang, J. J.; Zhao, Y. F. Turning on Zn 4s electrons in a N2-Zn-B2 configuration to stimulate remarkable ORR performance. Angew. Chem., Int. Ed. 2021, 60, 181–185.

[45]

Wang, B. Q.; Cheng, C.; Jin, M. M.; He, J.; Zhang, H.; Ren, W.; Li, J.; Wang, D. S.; Li, Y. D. A site distance effect induced by reactant molecule matchup in single-atom catalysts for Fenton-like reactions. Angew. Chem., Int. Ed. 2022, 61, e202207268.

[46]

Wei, S. J.; Li, A.; Liu, J. C.; Li, Z.; Chen, W. X.; Gong, Y.; Zhang, Q. H.; Cheong, W. C.; Wang, Y.; Zheng, L. R. et al. Direct observation of noble metal nanoparticles transforming to thermally stable single atoms. Nat. Nanotechnol. 2018, 13, 856–861.

[47]

Li, S. M.; Zhao, S. Q.; Lu, X. Y.; Ceccato, M.; Hu, X. M.; Roldan, A.; Catalano, J.; Liu, M.; Skrydstrup, T.; Daasbjerg, K. Low-valence Znδ+ (0 < δ < 2) single-atom material as highly efficient electrocatalyst for CO2 reduction. Angew. Chem., Int. Ed. 2021, 60, 22826–22832.

[48]

Li, Y.; Li, J. W.; Huang, J. H.; Chen, J. X.; Kong, Y.; Yang, B.; Li, Z. J.; Lei, L. C.; Chai, G. L.; Wen, Z. H. et al. Boosting electroreduction kinetics of nitrogen to ammonia via tuning electron distribution of single-atomic iron sites. Angew. Chem., Int. Ed. 2021, 60, 9078–9085.

[49]

Chen, Y. J.; Gao, R.; Ji, S. F.; Li, H. J.; Tang, K.; Jiang, P.; Hu, H. B.; Zhang, Z. D.; Hao, H. G.; Qu, Q. Y. et al. Atomic-level modulation of electronic density at cobalt single-atom sites derived from metal-organic frameworks: Enhanced oxygen reduction performance. Angew. Chem., Int. Ed. 2021, 60, 3212–3221.

[50]

Jiang, Z. L.; Wang, T.; Pei, J. J.; Shang, H. S.; Zhou, D. N.; Li, H. J.; Dong, J. C.; Wang, Y.; Cao, R.; Zhuang, Z. B. et al. Discovery of main group single Sb-N4 active sites for CO2 electroreduction to formate with high efficiency. Energy Environ. Sci. 2020, 13, 2856–2863.

[51]

Zhang, L.; Peisert, H.; Biswas, I.; Knupfer, M.; Batchelor, D.; Chassé, T. Growth of zinc phthalocyanine onto ZnS film investigated by synchrotron radiation-excited X-ray photoelectron and near-edge absorption spectroscopy. Surf. Sci. 2005, 596, 98–107.

[52]

Wang, Q.; Ina, T.; Chen, W. T.; Shang, L.; Sun, F. F.; Wei, S. H.; Sun-Waterhouse, D.; Telfer, S. G.; Zhang, T. R.; Waterhouse, G. I. N. Evolution of Zn(II) single atom catalyst sites during the pyrolysis-induced transformation of ZIF-8 to N-doped carbons. Sci. Bull. 2020, 65, 1743–1751.

[53]

Nørskov, J. K.; Abild-Pedersen, F.; Studt, F.; Bligaard. T. Density functional theory in surface chemistry and catalysis. Proc. Natl. Acad. Sci. USA 2011, 108, 937–943.

[54]

Medford, A. J.; Moses, P. G.; Jacobsen, K. W.; Peterson, A. A. A career in catalysis: Jens Kehlet Nørskov. ACS Catal. 2022, 12, 9679–9689.

[55]

Chen, Z. Q.; Huang, A. J.; Yu, K.; Cui, T. T.; Zhuang, Z. W.; Liu, S. J.; Li, J. Z.; Tu, R. Y.; Sun, K. A.; Tan, X. et al. Fe1N4-O1 site with axial Fe-O coordination for high-selective CO2 reduction over wide potential range. Energy Environ. Sci. 2021, 14, 3430–3437.

[56]

Liu, J. C.; Xiao, H.; Li, J. Constructing high-loading single-atom/cluster catalysts via an electrochemical potential window strategy. J. Am. Chem. Soc. 2020, 142, 3375–3383.

Nano Research
Pages 9132-9141
Cite this article:
Wei S, Jin Y, Lv C, et al. Optimizing geometric configuration of single Zn-N4 sites for boosting reciprocal transformation between aromatic alcohols and aldehydes. Nano Research, 2023, 16(7): 9132-9141. https://doi.org/10.1007/s12274-023-5748-1
Topics:

718

Views

3

Crossref

3

Web of Science

3

Scopus

0

CSCD

Altmetrics

Received: 09 February 2023
Revised: 08 April 2023
Accepted: 16 April 2023
Published: 13 June 2023
© Tsinghua University Press 2023
Return