AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Urea-assisted morphological engineering of MFI nanosheets with tunable b-thickness

Qiudi Yue1Chaowei Liu2Hongjuan Zhao2Honghai Liu2Pierre Ruterana3Jiaqi Zhao4Zhengxing Qin4( )Svetlana Mintova1,4( )
Laboratoire Catalyse et Spectrochimie, ENSICAEN, UNICAEN, CNRS, Caen 14050, France
Petrochemical Research Institute, PetroChina Company Limited, Beijing 100195, China
Centre de Recherche sur les Ions, les Matériaux et la Photonique, CIMAP-ENSICAEN, CNRS UMR 6252, Caen 14050, France
State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
Show Author Information

Graphical Abstract

MFI zeolite nanosheets (in both silicalite-1 and ZSM-5 types) with controllable b-thickness ranging from 50–200 nm were achieved with the facilitation of urea additive through optimization of the synthetic parameters including water content, urea, and SDA concentration.

Abstract

Engineering of crystal morphology affects the catalytic and adsorption properties of zeolitic materials. Considering the anisotropic diffusion of molecules derived from its topological features, MFI zeolite nanosheets with short b-axis thickness are highly desired materials to reduce diffusion resistance. However, the design and development of eco-friendly synthesis protocols with reasonable cost and high efficiency remain elusive. Herein, we reported a systematic study on the synthesis of MFI nanosheets using urea as an additive. Both silicalite-1 and ZSM-5 zeolites (MFI type framework structure) with controllable b-thicknesses ranging from 50–200 nm were achieved by optimizing the synthetic parameters including water content, urea and SDA concentrations. The concentration of hydroxide anions was found to dominate the crystallization kinetics compared with the counterpart tetrapropylammonium cations (TPA+). To facilitate the crystal growth of MFI zeolites in the presence of urea, the ratio OH/SiO2 has to be higher than 0.2, independent of the TPA+ concentration. The role of urea in the assistance of plate-like crystal formation through the inhibition of (010) facet growth was revealed by electron microscopy and infrared (IR) spectroscopy analyses. The developed strategy for morphological engineering is not limited to the MFI-type zeolite and can be applied to other frameworks depending on the intrinsic properties of additive molecules and the interactions between them.

Electronic Supplementary Material

Download File(s)
12274_2023_5749_MOESM1_ESM.pdf (1.6 MB)

References

[1]
Bradley, S. A.; Broach, R. W.; Mezza, T. M.; Prabhakar, S.; Sinkler, W. Zeolite characterization. In Zeolites in Industrial Separation and Catalysis. Kulprathipanja, S., Ed.; Wiley-VCH: Weinheim, 2010; pp 85–171.
[2]

Liu, Z. Q.; Zhou, J.; Tang, X. M.; Liu, F. J.; Yuan, J. M.; Li, G. C.; Huang, L.; Krishna, R.; Huang, K.; Zheng, A. M. Dependence of zeolite topology on alkane diffusion inside diverse channels. AiChE J. 2020, 66, e16269.

[3]

Teketel, S.; Lundegaard, L. F.; Skistad, W.; Chavan, S. M.; Olsbye, U.; Lillerud, K. P.; Beato, P.; Svelle, S. Morphology-induced shape selectivity in zeolite catalysis. J. Catal. 2015, 327, 22–32.

[4]

Hwang, Y. K.; Chang, J. S.; Park, S. E.; Kim, D. S.; Kwon, Y. U.; Jhung, S. H.; Hwang, J. S.; Park, M. S. Microwave fabrication of MFI zeolite crystals with a fibrous morphology and their applications. Angew. Chem., Int. Ed. 2005, 44, 556–560.

[5]

Pagis, C.; Morgado Prates, A. R.; Farrusseng, D.; Bats, N.; Tuel, A. Hollow zeolite structures: An overview of synthesis methods. Chem. Mater. 2016, 28, 5205–5223.

[6]

Opanasenko, M. V.; Roth, W. J.; Čejka, J. Two-dimensional zeolites in catalysis: Current status and perspectives. Catal. Sci. Technol. 2016, 6, 2467–2484.

[7]

Pérez-Ramírez, J.; Christensen, C. H.; Egeblad, K.; Christensen, C. H.; Groen, J. C. Hierarchical zeolites: Enhanced utilisation of microporous crystals in catalysis by advances in materials design. Chem. Soc. Rev. 2008, 37, 2530–2542.

[8]

Mintova, S.; Gilson, J. P.; Valtchev, V. Advances in nanosized zeolites. Nanoscale 2013, 5, 6693–6703.

[9]

Liu, X. L.; Shi, J.; Yang, G.; Zhou, J.; Wang, C. M.; Teng, J. W.; Wang, Y. D.; Xie, Z. K. A diffusion anisotropy descriptor links morphology effects of H-ZSM-5 zeolites to their catalytic cracking performance. Commun. Chem. 2021, 4, 107.

[10]

Degnan, T. F.; Chitnis, G. K.; Schipper, P. H. History of ZSM-5 fluid catalytic cracking additive development at Mobil: Dedicated to the late Werner O. Haag in appreciation of his outstanding contributions to heterogeneous catalysis and zeolite science. Microporous Mesoporous Mater. 2000, 35–36, 245–252.

[11]
Wise, J. J. Isomerization and disproportionation of alkyl aromatics. U. S. Patent 3377400, April 09, 1968.
[12]

Chen, N. Y. Personal perspective of the development of para selective ZSM-5 catalysts. Ind. Eng. Chem. Res. 2001, 40, 4157–4161.

[13]

Hong, U.; Kärger, J.; Kramer, R.; Pfeifer, H.; Seiffert, G.; Müller, U.; Unger, K. K.; Lück, H. B.; Ito, T. PFG n.m.r. study of diffusion anisotropy in oriented ZSM-5 type zeolite crystallites. Zeolites 1991, 11, 816–821.

[14]

Ji, Y.; Liu, Z. M.; Zhao, Z. C.; Gao, P.; Bao, X. H.; Chen, K. Z.; Hou, G. J. Untangling framework confinements: A dynamical study on bulky aromatic molecules in MFI zeolites. ACS Catal. 2022, 12, 15288–15297.

[15]

Choi, M.; Na, K.; Kim, J.; Sakamoto, Y.; Terasaki, O.; Ryoo, R. Stable single-unit-cell nanosheets of zeolite MFI as active and long-lived catalysts. Nature 2009, 461, 246–249.

[16]

Jeon, M. Y.; Kim, D.; Kumar, P.; Lee, P. S.; Rangnekar, N.; Bai, P.; Shete, M.; Elyassi, B.; Lee, H. S.; Narasimharao, K. et al. Ultra-selective high-flux membranes from directly synthesized zeolite nanosheets. Nature 2017, 543, 690–694.

[17]

Guth, J. L.; Kessler, H.; Wey, R. New route to pentasil-type zeolites using a non alkaline medium in the presence of fluoride ions. Stud. Surf. Sci. Catal. 1986, 28, 121–128.

[18]

Louis, B.; Kiwi-Minsker, L. Synthesis of ZSM-5 zeolite in fluoride media: An innovative approach to tailor both crystal size and acidity. Microporous Mesoporous Mater. 2004, 74, 171–178.

[19]

Dai, W. J.; Kouvatas, C.; Tai, W. S.; Wu, G. J.; Guan, N. J.; Li, L. D.; Valtchev, V. Platelike MFI crystals with controlled crystal faces aspect ratio. J. Am. Chem. Soc. 2021, 143, 1993–2004.

[20]

Zhang, J. X.; Ren, L. M.; Zhou, A. J.; Li, W. H.; Shang, S. J.; Liu, Y.; Jia, Z. H.; Liu, W.; Zhang, A. F.; Guo, X. W. et al. Tailored synthesis of ZSM-5 nanosheets with controllable b-axis thickness and aspect ratio: Strategy and growth mechanism. Chem. Mater. 2022, 34, 3217–3226.

[21]

Ban, T.; Mitaku, H.; Suzuki, C.; Matsuba, J.; Ohya, Y.; Takahashi, Y. Crystallization and crystal morphology of silicalite-1 prepared from silica gel using different amines as a base. J. Cryst. Growth 2005, 274, 594–602.

[22]

Shi, J.; Zhao, G. L.; Teng, J. W.; Wang, Y. D.; Xie, Z. K. Morphology control of ZSM-5 zeolites and their application in cracking reaction of C4 olefin. Inorg. Chem. Front. 2018, 5, 2734–2738.

[23]

Liu, Y.; Qiang, W. L.; Ji, T. T.; Zhang, M.; Li, M. R.; Lu, J. M.; Liu, Y. Uniform hierarchical MFI nanosheets prepared via anisotropic etching for solution-based sub-100-nm-thick oriented MFI layer fabrication. Sci. Adv. 2020, 6, eaay5993.

[24]

Ma, Q.; Fu, T. J.; Ren, K.; Li, H.; Jia, L. H.; Li, Z. Controllable orientation growth of ZSM-5 for methanol to hydrocarbon conversion: Cooperative effects of seed induction and medium pH control. Inorg. Chem. 2022, 61, 13802–13816.

[25]

Liu, C. Y.; Gu, W. Y.; Kong, D. J.; Guo, H. C. The significant effects of the alkali-metal cations on ZSM-5 zeolite synthesis: From mechanism to morphology. Microporous Mesoporous Mater. 2014, 183, 30–36.

[26]

Zhou, T. L.; Zhang, D. Z.; Liu, Y.; Sun, Y. W.; Ji, T. T.; Huang, S. J.; Liu, Y. Construction of monodispersed single-crystalline hierarchical ZSM-5 nanosheets via anisotropic etching. J. Energy Chem. 2022, 72, 516–521.

[27]

Huang, X.; Wang, C. F.; Zhu, Y. F.; Xu, W. Q.; Sun, Q.; Xing, A. H.; Ma, L. G.; Li, J.; Han, Z. H.; Wang, Y. G. Facile synthesis of ZSM-5 nanosheet arrays by preferential growth over MFI zeolite [100] face for methanol conversion. Microporous Mesoporous Mater. 2019, 288, 109573.

[28]

Qin, W.; Agarwal, A.; Choudhary, M. K.; Palmer, J. C.; Rimer, J. D. Molecular modifiers suppress nonclassical pathways of zeolite crystallization. Chem. Mater. 2019, 31, 3228–3238.

[29]

Shang, Z. Y.; Chen, Y.; Zhang, L. J.; Zhu, X. X.; Wang, X. P.; Shi, C. Plate-like MFI crystal growth achieved by guanidine compounds. Inorg. Chem. Front. 2022, 9, 2097–2103.

[30]

Shan, Z. C.; Wang, H.; Meng, X. J.; Liu, S. Y.; Wang, L.; Wang, C. Y.; Li, F.; Lewis, J. P.; Xiao, F. S. Designed synthesis of TS-1 crystals with controllable b-oriented length. Chem. Commun. 2011, 47, 1048–1050.

[31]

Zhou, Z. H.; Jiang, R. L.; Chen, X. S.; Wang, X. W.; Hou, H. L. One-step synthesis of hierarchical lamellar H-ZSM-5 zeolite and catalytic performance of methanol to olefin. J. Solid State Chem. 2021, 298, 122132.

[32]

Ali, B.; Lan, X. C.; Arslan, M. T.; Gilani, S. Z. A.; Wang, H. J.; Wang, T. F. Controlling the selectivity and deactivation of H-ZSM-5 by tuning b-axis channel length for glycerol dehydration to acrolein. J. Ind. Eng. Chem. 2020, 88, 127–136.

[33]

Yang, J. H.; Gong, K.; Miao, D. Y.; Jiao, F.; Pan, X. L.; Meng, X. J.; Xiao, F. S.; Bao, X. H. Enhanced aromatic selectivity by the sheet-like ZSM-5 in syngas conversion. J. Energy Chem. 2019, 35, 44–48.

[34]

Qureshi, B. A.; Lan, X. C.; Arslan, M. T.; Wang, T. F. Highly active and selective nano H-ZSM-5 catalyst with short channels along b-axis for glycerol dehydration to acrolein. Ind. Eng. Chem. Res. 2019, 58, 12611–12622.

[35]

Liu, Y.; Zhou, X. Z.; Pang, X. M.; Jin, Y. Y.; Meng, X. J.; Zheng, X. M.; Gao, X. H.; Xiao, F. S. Improved para-xylene selectivity in meta-xylene isomerization over ZSM-5 crystals with relatively long b-axis length. ChemCatChem 2013, 5, 1517–1523.

[36]

Shi, J.; Du, Y. J.; He, W. R.; Zhao, G. L.; Qin, Y. C.; Song, L. J.; Hu, J.; Guan, Y.; Zhu, J. F.; Wang, C. M. et al. Insights into the effect of the adsorption preference of additives on the anisotropic growth of ZSM-5 zeolite. Chem.—Eur. J. 2022, 28, e202201781.

[37]

Díaz, I.; Kokkoli, E.; Terasaki, O.; Tsapatsis, M. Surface structure of zeolite (MFI) crystals. Chem. Mater. 2004, 16, 5226–5232.

[38]
Boxhoorn, G.; Sudmeijer, O.; van Kasteren, P. H. G. Identification of a double five-ring silicate, a possible precursor in the synthesis of ZSM-5. J. Chem. Soc. Chem. Commun. 1983, 1416–1418.
[39]

Hendricks, W. M.; Bell, A. T.; Radke, C. J. Effects of organic and alkali metal cations on the distribution of silicate anions in aqueous solutions. J. Phys. Chem. 1991, 95, 9513–9518.

[40]

Camblor, M. A.; Mifsud, A.; Pérez-Pariente, J. Influence of the synthesis conditions on the crystallization of zeolite Beta. Zeolites 1991, 11, 792–797.

[41]

Yue, Q. D.; Kutukova, K.; Li, A.; Čejka, J.; Zschech, E.; Opanasenko, M. Controllable zeolite AST crystallization: Between classical and reversed crystal growth. Chem.—Eur. J. 2022, 28, e202200590.

[42]

Khan, Z.; Rafiquee, M. Z. A.; Kabir-ud-din; Niaz, M. A.; Khan, A. A. Kinetics and mechanism of alkaline hydrolysis of urea and sodium cyanate. Indian J. Chem. 1996, 35A, 1116–1119.

[43]

Price, G. D.; Pluth, J. J.; Smith, J. V.; Araki, T.; Bennett, J. M. Crystal structure of tetrapropylammonium fluoride-silicalite. Nature 1981, 292, 818–819.

[44]

Grosskreuz, I.; Gies, H.; Marler, B. Alteration and curing of framework defects by heating different as-made silica zeolites of the MFI framework type. Microporous Mesoporous Mater. 2020, 291, 109683.

[45]
Barlow, G. B.; Corish, P. J. 337. Infrared absorption spectra of some urea complexes. J. Chem. Soc. 1959, 1706–1710.
[46]

Piasek, Z.; Urbański, T. The infra-red absorption spectrum and structure of urea. Bull. Pol. Acad. Sci-Tech. 1962, 10, 113–120.

[47]

Tanaka, K.; White, J. M. Characterization of species adsorbed on oxidized and reduced anatase. J. Phys. Chem. 1982, 86, 4708–4714.

[48]

Li, K. M.; Jiang, J. G.; Tian, S. C.; Chen, X. J.; Yan, F. Influence of silica types on synthesis and performance of amine–silica hybrid materials used for CO2 capture. J. Phys. Chem. C 2014, 118, 2454–2462.

[49]

Manivannan, M.; Rajendran, S. Investigation of inhibitive action of urea-Zn2+ system in the corrosion control of carbon steel in sea water. Int. J. Eng. Sci. Technol. 2011, 3, 8048–8060.

[50]

Stewart, J. E. Infrared absorption spectra of urea, thiourea, and some thiourea-alkali halide complexes. J. Chem. Phys. 1957, 26, 248–254.

[51]

Cui, S.; Cheng, W. W.; Shen, X. D.; Fan, M. H.; Russell, A.; Wu, Z. W.; Yi, X. B. Mesoporous amine-modified SiO2 aerogel: A potential CO2 sorbent. Energy Environ. Sci. 2011, 4, 2070–2074.

[52]

Patis, A.; Dracopoulos, V.; Nikolakis, V. Investigation of silicalite-1 crystallization using attenuated total reflection/fourier transform infrared spectroscopy. J. Phys. Chem. C 2007, 111, 17478–17484.

[53]

Al-Oweini, R.; El-Rassy, H. Synthesis and characterization by FTIR spectroscopy of silica aerogels prepared using several Si(OR)4 and R′′Si(OR′)3 precursors. J. Mol. Struct. 2009, 919, 140–145.

[54]

Wang, Y.; Wang, R. W.; Xu, D. O.; Sun, C. Y.; Ni, L.; Fu, W. W.; Zeng, S. J.; Jiang, S.; Zhang, Z. T.; Qiu, S. L. Synthesis and properties of MFI zeolites with microporous, mesoporous and macroporous hierarchical structures by a gel-casting technique. New J. Chem. 2016, 40, 4398–4405.

[55]

Astorino, E.; Peri, J. B.; Willey, R. J.; Busca, G. Spectroscopic characterization of silicalite-1 and titanium silicalite-1. J. Catal. 1995, 157, 482–500.

[56]

Iwasaki, A.; Sano, T.; Kiyozumi, Y. Effect of additives on the growth behavior of silicalite crystal. Microporous Mesoporous Mater. 1998, 25, 119–126.

Nano Research
Pages 12196-12206
Cite this article:
Yue Q, Liu C, Zhao H, et al. Urea-assisted morphological engineering of MFI nanosheets with tunable b-thickness. Nano Research, 2023, 16(10): 12196-12206. https://doi.org/10.1007/s12274-023-5749-0
Topics:
Part of a topical collection:

1132

Views

9

Crossref

6

Web of Science

10

Scopus

0

CSCD

Altmetrics

Received: 25 February 2023
Revised: 08 April 2023
Accepted: 17 April 2023
Published: 13 June 2023
© Tsinghua University Press 2023
Return